Hrbust 1389 JiaozhuV5 Substrings【思维+大模拟+细心+细心】窝为什么要做这种题T T

本文介绍了一种算法,用于解决在一个长字符串中寻找包含指定数量特定子串的问题。通过预处理每个特定子串的位置,并结合不同的情况分析,有效地计算出满足条件的子串总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JiaozhuV5 Substrings
Time Limit: 1000 MSMemory Limit: 65536 K
Total Submit: 72(11 users)Total Accepted: 14(8 users)Rating: Special Judge: No
Description

This is the definition of substring:

String x is a substring of string w if it has a non-zero length and can be found from some position in string w.(e.g. There are 6 substring of string "aba": "a", "b", "a", "ab", "ba", "aba".) Two substrings are considered different if their positions of occurrence are different. So, if some string occurs multiple times, we should consider the number of times it occurs.

You are given a string s. Your task is to find the number of its substrings which containing exactly k "JiaozhuV5"(Case-sensitive).

Input

There are multiple test cases. The first line of input is an integer T indicating the number of test cases. Then T test cases follow.

For each test case:

Line 1. This line contains the single integer k (0 ≤ k ≤ 106).

Line 2. This line contains a non-empty string s. The length of s does not exceed 106 characters. It consists only of letters, numbers "0" to "9" and character "!".

Output

For each test case:

Line 1. Output the number of substrings of the given string, containing exactly k "JiaozhuV5" (Case-sensitive).

Sample Input

3

1

JiaozhuV5!!

2

abJiaozhuV5!!JiaozhuV5cd

100

abJiaozhuV5!!JiaozhuV5cd

Sample Output

3

9

0

Hint

In the first sample the sought substrings are:

JiaozhuV5

JiaozhuV5!

JiaozhuV5!!

In the second sample the sought substrings are:

JiaozhuV5!!JiaozhuV5

bJiaozhuV5!!JiaozhuV5

JiaozhuV5!!JiaozhuV5c

bJiaozhuV5!!JiaozhuV5c

abJiaozhuV5!!JiaozhuV5

JiaozhuV5!!JiaozhuV5cd

bJiaozhuV5!!JiaozhuV5cd

abJiaozhuV5!!JiaozhuV5c

abJiaozhuV5!!JiaozhuV5cd

Source
哈理工2012春季校赛 - 现场赛
Author
齐达拉图@HRBUST

题目大意:

给你一个长度不超过10^6的一个字符串,让你找一共有多少个子串,其中包含K个JiaozhuV5


思路(Wa到死真开心):


1、O(n)处理出每一个JiaozhuV5的区间左端点和右端点。


2、分类讨论:

①当k==0的时候,如果我们一个JiaozhuV5都没有,ans=len*(len+1)/2;

②当k==0的时候,如果我们有JiaozhuV5,那么我们就要把带有JiaozhuV5的每一个子序列都去掉。

③当k>0的时候,我们对于每一段都进行计算。


3、思路真的很好建立,代码真的很难写.......(调了四个小时吧.....)窝为什么要做这种题!!!!!!!!!!!!!!


Ac代码:


#include<stdio.h>
#include<string.h>
using namespace std;
#define ll long long int
char a[1000010];
ll ans[1000010];
ll b[1000100];
ll s[1000001];
ll e[1000001];
ll cal(ll num)
{
    return num*(num+1)/2;
}
ll judge(ll i)
{
    if(a[i]=='J')return 1;
    if(a[i]=='i')return 2;
    if(a[i]=='a')return 3;
    if(a[i]=='o')return 4;
    if(a[i]=='z')return 5;
    if(a[i]=='h')return 6;
    if(a[i]=='u')return 7;
    if(a[i]=='V')return 8;
    if(a[i]=='5')return 9;
    return 0;
}
int main()
{
    ll t;
    scanf("%lld",&t);
    while(t--)
    {
        ll n;
        scanf("%lld",&n);
        scanf("%s",a);
        ll cont=0;
        ll output=0;
        ll len=strlen(a);
        for(ll i=0; i<len; i++)
        {
            if(a[i]=='J')
            {
                b[i]=1;
                continue;
            }
            if(i==0)
            {
                if(a[i]=='J')b[i]=1;
                else b[i]=0;
            }
            else
            {
                ll tmp=judge(i);
                if(tmp==b[i-1]+1)
                {
                    b[i]=tmp;
                }
                else b[i]=0;
            }
        }
        for(ll i=0; i<len; i++)
        {
            if(b[i]==9)
            {
                s[cont]=(i+1-8);
                e[cont]=i;
                cont++;
            }
        }
        if(n==0&&cont==0)
        {
            output+=cal(len);
        }
        else if(n==0)
        {
            output+=cal(e[0])-cal(7)+cal(len-s[cont-1]);
            for(ll i=0; i<cont-1; i++)
            {
                output+=cal(e[i+1]-s[i])-cal(7);
            }
        }
        else
        {
            if(cont==n)
            output+=s[0]*(len-e[n-1]);
            else
            {
                for(int i=0;i<=cont-n;i++)
                {
                    if(i==0)
                    {
                        output+=s[i]*(e[i+n]-e[i+n-1]);
                    }
                    else if(i==cont-n)
                    {
                        output+=(s[i]-s[i-1])*(len-e[cont-1]);
                    }
                    else
                    {
                        output+=(s[i]-s[i-1])*(e[i+n]-e[i+n-1]);
                    }
                }
            }
        }
        printf("%lld\n",output);
    }
}
/*
1
1
abJiaozhuV5!!JiaozhuV5cdJiaozhuV5ef
*/






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值