There is a polyline going through points (0, 0) – (x, x) – (2x, 0) – (3x, x) – (4x, 0) – ... - (2kx, 0) – (2kx + x, x) – ....
We know that the polyline passes through the point (a, b). Find minimum positive value x such that it is true or determine that there is no such x.
Only one line containing two positive integers a and b (1 ≤ a, b ≤ 109).
Output the only line containing the answer. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 9. If there is no such x then output - 1 as the answer.
3 1
1.000000000000
1 3
-1
4 1
1.250000000000
You can see following graphs for sample 1 and sample 3.


题目大意:
有一系列周期性折线:(0,0)->(X,X)->(2X,0)->(3X,X)..................
让你寻找一个合法的X,使得X尽可能的小,并且穿过点(A,B);
思路(来源于网络):
首先我们分析,这个点要么在:y=x-2*k1*X上,要么在:y=-x+2*k2*X上
通过分析:
①X=(x-y)/2k1;
②X=(x+y)/2k2;
③2k1=(x-y)/X;
④2k2=(x+y)/X;
很明显,其中(x+y)和(x-y)是固定不变的,那么我们想要X尽可能的小,那么显然需要2k1和2k2尽可能的大,然而需要2k1和2k2尽可能的大,我们又需要X尽可能的小,通过分析我们不难得出结论:X>=y,那么我们可以通过一个设定X=y,带入求得k1,以及k2我们还知道k1和k2是整数,那么对应我们向下取整的去求k1和k2
然后再带回①和②中秋两个X,取最小即为答案。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
using namespace std;
int main()
{
double x,y;
while(~scanf("%lf%lf",&x,&y))
{
if(x<y)
{
printf("-1\n");
}
else if(x==y)
{
printf("%.9lf\n",x);
}
else
{
double k1=floor((x-y)/2/y);
double k2=floor((x+y)/2/y);
printf("%.9lf\n",min((x-y)/k1/2,(x+y)/k2/2));
}
}
}
探讨了如何找到一条周期性折线穿过指定点时的最小正参数X的方法。该折线通过一系列特定坐标形成,任务是确定使折线经过指定坐标(a, b)的最小正数值X。
1583

被折叠的 条评论
为什么被折叠?



