Codeforces 570B Simple Game【思维】

本文介绍了一个简单的游戏场景,其中玩家需要选择一个整数以获得相对于另一名玩家的最大胜利概率。通过分析可知,最佳的选择通常是比对手所选数字大一或小一的数,具体取决于这些选择能够覆盖的范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Simple Game
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Misha and Andrew were playing a very simple game. First, each player chooses an integer in the range from 1 to n. Let's assume that Misha chose number m, and Andrew chose number a.

Then, by using a random generator they choose a random integer c in the range between 1 and n (any integer from 1 to n is chosen with the same probability), after which the winner is the player, whose number was closer to c. The boys agreed that if m and a are located on the same distance from c, Misha wins.

Andrew wants to win very much, so he asks you to help him. You know the number selected by Misha, and number n. You need to determine which value of a Andrew must choose, so that the probability of his victory is the highest possible.

More formally, you need to find such integer a (1 ≤ a ≤ n), that the probability that is maximal, where c is the equiprobably chosen integer from 1 to n (inclusive).

Input

The first line contains two integers n and m (1 ≤ m ≤ n ≤ 109) — the range of numbers in the game, and the number selected by Misha respectively.

Output

Print a single number — such value a, that probability that Andrew wins is the highest. If there are multiple such values, print the minimum of them.

Examples
Input
3 1
Output
2
Input
4 3
Output
2
Note

In the first sample test: Andrew wins if c is equal to 2 or 3. The probability that Andrew wins is 2 / 3. If Andrew chooses a = 3, the probability of winning will be 1 / 3. If a = 1, the probability of winning is 0.

In the second sample test: Andrew wins if c is equal to 1 and 2. The probability that Andrew wins is 1 / 2. For other choices of a the probability of winning is less.


题目大意:

有一个随机区间【1,n】;已知现在M选择的数字是m.现在让你选择一个数字c,使得你可以获胜的几率最大。每轮游戏系统都会随机出来一个数字,对应获胜的人就是距离这个数字最近的人,如果两个数字距离这个随机的数字是一样近的,M获胜。


思路:


想要获胜,显然我们需要压制住M所选的数字,让随机出来的一片数字距离自己都是最近的才行。


那么很显然,要么选择m-1,要么选择m+1.


进行区间大小的比对即可。。


Ac代码:


#include<stdio.h>
#include<string.h>
using namespace std;
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        if(n==1&&m==1)
        {
            printf("1\n");
            continue;
        }
        int b=m-1;
        int c=m+1;
        if(b>=n-c+1)
        {
            printf("%d\n",b);
        }
        else printf("%d\n",c);
    }
}



### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值