Codeforces#382(Div. 2) B.Urbanization【贪心】

探讨如何将N个人根据其财富值最优分配至两个城市,使两城居民平均财富之和最大化的问题及解决方案。

B. Urbanization
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Local authorities have heard a lot about combinatorial abilities of Ostap Bender so they decided to ask his help in the question of urbanization. There are n people who plan to move to the cities. The wealth of the i of them is equal to ai. Authorities plan to build two cities, first for n1 people and second for n2 people. Of course, each of n candidates can settle in only one of the cities. Thus, first some subset of candidates of size n1 settle in the first city and then some subset of size n2 is chosen among the remaining candidates and the move to the second city. All other candidates receive an official refuse and go back home.

To make the statistic of local region look better in the eyes of their bosses, local authorities decided to pick subsets of candidates in such a way that the sum of arithmetic mean of wealth of people in each of the cities is as large as possible. Arithmetic mean of wealth in one city is the sum of wealth ai among all its residents divided by the number of them (n1 or n2 depending on the city). The division should be done in real numbers without any rounding.

Please, help authorities find the optimal way to pick residents for two cities.

Input

The first line of the input contains three integers n, n1 and n2 (1 ≤ n, n1, n2 ≤ 100 000, n1 + n2 ≤ n) — the number of candidates who want to move to the cities, the planned number of residents of the first city and the planned number of residents of the second city.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000), the i-th of them is equal to the wealth of the i-th candidate.

Output

Print one real value — the maximum possible sum of arithmetic means of wealth of cities' residents. You answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
Input
2 1 1
1 5
Output
6.00000000
Input
4 2 1
1 4 2 3
Output
6.50000000
Note

In the first sample, one of the optimal solutions is to move candidate 1 to the first city and candidate 2 to the second.

In the second sample, the optimal solution is to pick candidates 3 and 4 for the first city, and candidate 2 for the second one. Thus we obtain (a3 + a4) / 2 + a2 = (3 + 2) / 2 + 4 = 6.5


题目大意:

一共有N个人,现在其中需要将其分配到两个城市中去,每个人都有其权值,城市1需要n1个人,城市2需要n2个人,对应每个城市的权值为其平均值,问总和的权值最大是多少。


思路:


1、首先我们按照每个人的权值排序,接下来思考:

①显然平均值的分母越小,其城市的总值越大。那么我们取n1和n2中最小值记做minn,分配给其minn个人(取权值最大的minn个人),接下来再取n1和n2中最大值记做maxn,分配给其maxn个人(去掉那minn个人之后中最大的maxn个人);

②贪心过程结束。


Ac代码:


#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
int a[100500];
int main()
{
    int n,n1,n2;
    while(~scanf("%d%d%d",&n,&n1,&n2))
    {
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        sort(a,a+n);
        int minn=min(n1,n2);
        int maxn=max(n1,n2);
        double ans=0;
        double ans2=0;
        int cont=0;
        int pos;
        for(int i=n-1;i>=0;i--)
        {
            cont++;
            ans+=a[i];
            if(cont==minn)
            {
                pos=i-1;
                break;
            }
        }
        cont=0;
        for(int i=pos;i>=0;i--)
        {
            cont++;
            ans2+=a[i];
            if(cont==maxn)
            {
                break;
            }
        }
        printf("%lf\n",ans/minn+ans2/maxn);
    }
}







本项目构建于RASA开源架构之上,旨在实现一个具备多模态交互能力的智能对话系统。该系统的核心模块涵盖自然语言理解、语音转文本处理以及动态对话流程控制三个主要方面。 在自然语言理解层面,研究重点集中于增强连续对话中的用户目标判定效能,并运用深度神经网络技术提升关键信息提取的精确度。目标判定旨在解析用户话语背后的真实需求,从而生成恰当的反馈;信息提取则专注于从语音输入中析出具有特定意义的要素,例如个体名称、空间位置或时间节点等具体参数。深度神经网络的应用显著优化了这些功能的实现效果,相比经典算法,其能够解析更为复杂的语言结构,展现出更优的识别精度与更强的适应性。通过分层特征学习机制,这类模型可深入捕捉语言数据中隐含的语义关联。 语音转文本处理模块承担将音频信号转化为结构化文本的关键任务。该技术的持续演进大幅提高了人机语音交互的自然度与流畅性,使语音界面日益成为高效便捷的沟通渠道。 动态对话流程控制系统负责维持交互过程的连贯性与逻辑性,包括话轮转换、上下文关联维护以及基于情境的决策生成。该系统需具备处理各类非常规输入的能力,例如用户使用非规范表达或对系统指引产生歧义的情况。 本系统适用于多种实际应用场景,如客户服务支持、个性化事务协助及智能教学辅导等。通过准确识别用户需求并提供对应信息或操作响应,系统能够创造连贯顺畅的交互体验。借助深度学习的自适应特性,系统还可持续优化语言模式理解能力,逐步完善对新兴表达方式与用户偏好的适应机制。 在技术实施方面,RASA框架为系统开发提供了基础支撑。该框架专为构建对话式人工智能应用而设计,支持多语言环境并拥有活跃的技术社区。利用其内置工具集,开发者可高效实现复杂的对话逻辑设计与部署流程。 配套资料可能包含补充学习文档、实例分析报告或实践指导手册,有助于使用者深入掌握系统原理与应用方法。技术文档则详细说明了系统的安装步骤、参数配置及操作流程,确保用户能够顺利完成系统集成工作。项目主体代码及说明文件均存放于指定目录中,构成完整的解决方案体系。 总体而言,本项目整合了自然语言理解、语音信号处理与深度学习技术,致力于打造能够进行复杂对话管理、精准需求解析与高效信息提取的智能语音交互平台。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值