Codeforces 115 B Lawnmower【思维】

本文介绍了一种通过特定路径移动割草机以清除所有杂草的算法。在限定的网格内,利用上下左右四个基本方向,寻找清除所有杂草所需的最小步骤数。此问题涉及到路径规划与状态转移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Lawnmower
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You have a garden consisting entirely of grass and weeds. Your garden is described by an n × m grid, with rows numbered 1 to n from top to bottom, and columns 1 to m from left to right. Each cell is identified by a pair (r, c) which means that the cell is located at row r and column c. Each cell may contain either grass or weeds. For example, a 4 × 5 garden may look as follows (empty cells denote grass):

You have a land-mower with you to mow all the weeds. Initially, you are standing with your lawnmower at the top-left corner of the garden. That is, at cell (1, 1). At any moment of time you are facing a certain direction — either left or right. And initially, you face right.

In one move you can do either one of these:

1) Move one cell in the direction that you are facing.

  • if you are facing right: move from cell (r, c) to cell (r, c + 1)

  • if you are facing left: move from cell (r, c) to cell (r, c - 1)

2) Move one cell down (that is, from cell (r, c) to cell (r + 1, c)), and change your direction to the opposite one.
  • if you were facing right previously, you will face left

  • if you were facing left previously, you will face right

You are not allowed to leave the garden. Weeds will be mowed if you and your lawnmower are standing at the cell containing the weeds (your direction doesn't matter). This action isn't counted as a move.

What is the minimum number of moves required to mow all the weeds?

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 150) — the number of rows and columns respectively. Then follow n lines containing m characters each — the content of the grid. "G" means that this cell contains grass. "W" means that this cell contains weeds.

It is guaranteed that the top-left corner of the grid will contain grass.

Output

Print a single number — the minimum number of moves required to mow all the weeds.

Examples
Input
4 5
GWGGW
GGWGG
GWGGG
WGGGG
Output
11
Input
3 3
GWW
WWW
WWG
Output
7
Input
1 1
G
Output
0
Note

For the first example, this is the picture of the initial state of the grid:

A possible solution is by mowing the weeds as illustrated below:


题目大意:

按照题干中的四种方式走,只要向下走一行,方向就会转变,问最少走的步数能够除掉所有的草。


思路:


1、对应初始的时候是向右走的,首先需要向右走走到最右边的那个W的位子。


2、然后继续判断下一行,如果下一行有W在当前位子右边,还要推着小车向右多走几步。


3、对应同理,如果在向左走的时候,在当前行首先我们走到最左边的那个W的位子,然后再判断下一行,如果下一行有W在当前位子的左边,那么我们还要推着小车向左多走几步。


4、注意当割完所有草之后要跳出,要不然会有多余的行走步数。


Ac代码:


#include<stdio.h>
#include<string.h>
using namespace std;
char a[165][165];
int n,m;
int abs(int aaa)
{
    if(aaa<0)return -aaa;
    else return aaa;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        int sum=0;
        for(int i=0; i<n; i++)
        {
            scanf("%s",a[i]);
            for(int j=0; j<m; j++)
            {
                if(a[i][j]=='W')sum++;
            }
        }
        int d=1;
        int tmp=0;
        int output=0;
        int y=0;
        for(int i=0; i<n; i++)
        {
            int maxn=-1;
            //printf("%d %d %d\n",y,tmp,output);
            if(tmp==sum)break;
            for(int j=0; j<m; j++)
            {
                if(a[i][j]=='W')
                {
                    if(d==1)maxn=j;
                    else
                    {
                        if(maxn==-1)maxn=j;
                    }
                }
                if(a[i+1][j]=='W')
                {
                    if(d==1)maxn=j;
                    else
                    {
                        if(maxn==-1)maxn=j;
                    }
                }
            }
            if(maxn==-1)
            {
                output+=1;
                d=1-d;
                continue;
            }
            else
            {

                if(d==1)
                {
                    d=0;
                    output+=abs(y-maxn);
                    for(int z=0; z<m; z++)
                    {
                        if(a[i][z]=='W')tmp++;
                    }
                    y=maxn;
                    if(i!=n-1&&tmp!=sum)output++;
                }
                else
                {
                    d=1;
                    output+=abs(y-maxn);
                    for(int z=0; z<m; z++)
                    {
                        if(a[i][z]=='W')tmp++;
                    }
                    y=maxn;
                    if(i!=n-1&&tmp!=sum)output++;
                }
            }
        }
        printf("%d\n",output);
    }
}



内容概要:文章基于4A架构(业务架构、应用架构、数据架构、技术架构),对SAP的成本中心和利润中心进行了详细对比分析。业务架构上,成本中心是成本控制的责任单元,负责成本归集与控制,而利润中心是利润创造的独立实体,负责收入、成本和利润的核算。应用架构方面,两者都依托于SAP的CO模块,但功能有所区分,如成本中心侧重于成本要素归集和预算管理,利润中心则关注内部交易核算和获利能力分析。数据架构中,成本中心与利润中心存在多对一的关系,交易数据通过成本归集、分摊和利润计算流程联动。技术架构依赖SAP S/4HANA的内存计算和ABAP技术,支持实时核算与跨系统集成。总结来看,成本中心和利润中心在4A架构下相互关联,共同为企业提供精细化管理和决策支持。 适合人群:从事企业财务管理、成本控制或利润核算的专业人员,以及对SAP系统有一定了解的企业信息化管理人员。 使用场景及目标:①帮助企业理解成本中心和利润中心在4A架构下的运作机制;②指导企业在实施SAP系统时合理配置成本中心和利润中心,优化业务流程;③提升企业对成本和利润的精细化管理水平,支持业务决策。 其他说明:文章不仅阐述了理论概念,还提供了具体的应用场景和技术实现方式,有助于读者全面理解并应用于实际工作中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值