Lweb and String
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 118 Accepted Submission(s): 79
Problem Description
Lweb has a string S.
Oneday, he decided to transform this string to a new sequence.
You need help him determine this transformation to get a sequence which has the longest LIS(Strictly Increasing).
You need transform every letter in this string to a new number.
A is the set of letters of S, B is the set of natural numbers.
Every injection f:A→B can be treat as an legal transformation.
For example, a String “aabc”, A={a,b,c}, and you can transform it to “1 1 2 3”, and the LIS of the new sequence is 3.
Now help Lweb, find the longest LIS which you can obtain from S.
LIS: Longest Increasing Subsequence. (https://en.wikipedia.org/wiki/Longest_increasing_subsequence)
Input
The first line of the input contains the only integer T,(1≤T≤20).
Then T lines follow, the i-th line contains a string S only containing the lowercase letters, the length of S will not exceed 105.
Output
For each test case, output a single line "Case #x: y", where x is the case number, starting from 1. And y is the answer.
Sample Input
2
aabcc
acdeaa
Sample Output
Case #1: 3
Case #2: 4
题目大意:
给你一个字符串,我们可以给予对应字符串每个字符一个合理的值,然后求其最大上升子序列的值。
思路:
既然我们可以自己定义每个字符串中每个字符的值,我们及可以直接定义,每一次遇到一个没出现的字符,output++即可。
Ac代码:
#include<stdio.h>
#include<string.h>
using namespace std;
char a[1515151];
int vis[26];
int main()
{
int t;
int kase=0;
scanf("%d",&t);
while(t--)
{
memset(vis,0,sizeof(vis));
scanf("%s",a);
int n=strlen(a);
int output=0;
for(int i=0;i<n;i++)
{
if(vis[a[i]-'a']==0)vis[a[i]-'a']=1,output++;
}
printf("Case #%d: ",++kase);
printf("%d\n",output);
}
}