| Flow Problem Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem Description Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph. Input The first line of input contains an integer T, denoting the number of test cases. Output For each test cases, you should output the maximum flow from source 1 to sink N. Sample Input 2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1 Sample Output Case 1: 1 Case 2: 2 Author HyperHexagon Source |
题目大意:
t组数据,n个点,m条边,求最大流。
记录属于自己的模板!
Dinic 358ms
Ford_Fulkerson 1808ms
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
int head[100000];
struct edge
{
int from,to,w,next;
}e[1000000];
int div[100000];
int n,m,cont,ss,tt;
void add(int from,int to,int w)
{
e[cont].to=to;
e[cont].w=w;
e[cont].next=head[from];
head[from]=cont++;
}
int makediv()
{
memset(div,0,sizeof(div));
queue<int >s;
s.push(ss);
div[ss]=1;
while(!s.empty())
{
int u=s.front();
if(u==tt)return 1;
s.pop();
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
int w=e[i].w;
if(w&&div[v]==0)
{
div[v]=div[u]+1;
s.push(v);
}
}
}
return 0;
}
int Dfs(int u,int maxflow,int tt)
{
if(u==tt)return maxflow;
int ret=0;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
int w=e[i].w;
if(w&&div[v]==div[u]+1)
{
int f=Dfs(v,min(maxflow-ret,w),tt);
e[i].w-=f;
e[i^1].w+=f;
ret+=f;
if(ret==maxflow)return ret;
}
}
return ret;
}
void Dinic()
{
ss=1;tt=n;
int ans=0;
while(makediv()==1)
{
ans+=Dfs(ss,INF,tt);
}
printf("%d\n",ans);
}
int main()
{
int t;
int kase=0;
scanf("%d",&t);
while(t--)
{
cont=0;
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
add(x,y,w);
add(y,x,0);
}
printf("Case %d: ",++kase);
Dinic();
}
}
本文详细介绍了一种经典的计算机科学问题——最大流问题,并提供了一个具体的实现案例。针对多组测试数据,通过输入节点数量及边的数量来构建加权有向图,并利用Dinic算法求解从源点到汇点的最大流值。
1万+

被折叠的 条评论
为什么被折叠?



