Poj 3259 Wormholes【SPFA判断负权回路】

探讨了在一个包含特殊路径和虫洞的农场网络中是否存在能够使农民John返回到出发前时间的循环路径。通过Bellman-Ford和SPFA算法判断是否存在负权回路,从而实现时间旅行。

Wormholes

Time Limit: 2000MS

 

Memory Limit: 65536K

Total Submissions: 42123

 

Accepted: 15483

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2

3 3 1

1 2 2

1 3 4

2 3 1

3 1 3

3 2 1

1 2 3

2 3 4

3 1 8

Sample Output

NO

YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

USACO 2006 December Gold

 

题目大意:

有t组数据,没组数据第一行三个数n,m,w,表示有n个节点,m条无向边,w条有向负权边,问是否有负权回路存在。


思路:

Bellman-Ford/SPFA算法都能用来判断负权回路是否存在。这里我的代码是SPFA代码实现的,设定一个出队次数数组out【i】,表示节点i的出队次数,如果某个节点的出队次数达到了n次,那么就说明这个图一定有负权回路存在。


AC代码:

#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
int head[1000000];
struct EdgeNode
{
    int to;
    int w;
    int next;
}e[1000000];
int out[1000000];
int vis[1000000];
int dis[1000000];
int n,m,w,cont;
void add(int from,int to,int w)
{
    e[cont].to=to;
    e[cont].w=w;
    e[cont].next=head[from];
    head[from]=cont++;
}
int SPFA(int ss)
{
    memset(out,0,sizeof(out));
    memset(vis,0,sizeof(vis));
    vis[ss]=1;
    for(int i=1;i<=n;i++)dis[i]=0x3f3f3f3f;
    dis[ss]=0;
    queue<int >s;
    s.push(ss);
    while(!s.empty())
    {
        int u=s.front();
        s.pop();vis[u]=0;
        out[u]++;
        if(out[u]>=n)return 0;
        for(int j=head[u];j!=-1;j=e[j].next)
        {
            int v=e[j].to;
            int w=e[j].w;
            if(dis[v]>dis[u]+w)
            {
                dis[v]=dis[u]+w;
                if(vis[v]==0)
                {
                    vis[v]=1;
                    s.push(v);
                }
            }
        }
    }
    return 1;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        cont=0;
        memset(head,-1,sizeof(head));
        scanf("%d%d%d",&n,&m,&w);
        while(m--)
        {
            int x,y,w;
            scanf("%d%d%d",&x,&y,&w);
            add(x,y,w);
            add(y,x,w);
        }
        while(w--)
        {
            int x,y,w;
            scanf("%d%d%d",&x,&y,&w);
            add(x,y,-w);
        }
        int tt=SPFA(1);
        if(tt==1)
        {
            printf("NO\n");
        }
        else printf("YES\n");
    }
}






本系统旨在构建一套面向高等院校的综合性教务管理平台,涵盖学生、教师及教务处三个核心角色的业务需求。系统设计着重于实现教学流程的规范化与数据处理的自动化,以提升日常教学管理工作的效率与准确性。 在面向学生的功能模块中,系统提供了课程选修服务,学生可依据培养方案选择相应课程,并生成个人专属的课表。成绩查询功能支持学生查阅个人各科目成绩,同时系统可自动计算并展示该课程的全班最高分、平均分、最低分以及学生在班级内的成绩排名。 教师端功能主要围绕课程与成绩管理展开。教师可发起课程设置申请,提交包括课程编码、课程名称、学分学时、课程概述在内的新课程信息,亦可对已开设课程的信息进行更新或撤销。在课程管理方面,教师具备录入所授课程期末考试成绩的权限,并可导出选修该课程的学生名单。 教务处作为管理中枢,拥有课程审批与教学统筹两大核心职能。课程设置审批模块负责处理教师提交的课程申请,管理员可根据教学计划与资源情况进行审核批复。教学安排模块则负责全局管控,包括管理所有学生的选课最终结果、生成包含学号、姓名、课程及成绩的正式成绩单,并能基于选课与成绩数据,统计各门课程的实际选课人数、最高分、最低分、平均分以及成绩合格的学生数量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值