POJ 3159 Candies【差分约束+SPFA】

本文介绍了一个关于幼儿园糖果分配的问题,并将其转化为最短路径问题进行求解。通过建立差分约束系统,利用SPFA算法实现了最优解的计算。

Candies

Time Limit: 1500MS

 

Memory Limit: 131072K

Total Submissions: 28026

 

Accepted: 7731

Description

During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher brought the kids of flymouse’s class a large bag of candies and had flymouse distribute them. All the kids loved candies very much and often compared the numbers of candies they got with others. A kid A could had the idea that though it might be the case that another kid B was better than him in some aspect and therefore had a reason for deserving more candies than he did, he should never get a certain number of candies fewer than B did no matter how many candies he actually got, otherwise he would feel dissatisfied and go to the head-teacher to complain about flymouse’s biased distribution.

snoopy shared class with flymouse at that time. flymouse always compared the number of his candies with that of snoopy’s. He wanted to make the difference between the numbers as large as possible while keeping every kid satisfied. Now he had just got another bag of candies from the head-teacher, what was the largest difference he could make out of it?

Input

The input contains a single test cases. The test cases starts with a line with two integers N and M not exceeding 30 000 and 150 000 respectively. N is the number of kids in the class and the kids were numbered 1 throughN. snoopy and flymouse were always numbered 1 and N. Then follow M lines each holding three integers AB and c in order, meaning that kid A believed that kid B should never get over c candies more than he did.

Output

Output one line with only the largest difference desired. The difference is guaranteed to be finite.

Sample Input

2 2

1 2 5

2 1 4

Sample Output

5

Hint

32-bit signed integer type is capable of doing all arithmetic.

Source

POJ Monthly--2006.12.31, Sempr

 

题目大意:给n个人分糖果,给出m个约数条件,每组包含三个数a,b,c,表示b的糖果数比a的糖果数不能多c个,即b-a<=c

问n比1最多能够多多少糖果。


题目分析:

明显的差分约束系统问题,能够将问题转化为最短路问题。以下给出转化过程及详解:

假设有这样的三个条件:


我们不妨把1,2,3三个人都看成节点,然后设k1,k2,k3为三条有向边的权值,那么1-2这条边能够取值为【0,k1】因为我们要求最大值,那么我们必然要取1-2这条边的权值为k1,2-3这条边的权值为k2,1-3这条边的权值为k3。

将约束条件转化为有向图:


我们再根据约束条件1和约束条件2相加,得到约束条件:1-3<=k1+k2,我们还有1-3<=k3两者同时成立,那么k1+k2和k3这两个数,最小的就是1比3多的糖果数。

我们再根据有向图的最短路松弛过程有:k1+k2与k3相比较,最小的就是3到1的有向图最短路径,那么不难理解,由差分约束问题很容易就转化到了最短路问题上来。


再因为数据比较大,我们采用SPFA+stack+读入外挂(fast IO)来优化这个问题,最后剩下的就是代码实现问题:


#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
using namespace std;
#define INF 0x3f3f3f3f
int head[30010];
struct EdgeNode
{
    int to;
    int w;
    int next;
}e[150010];
int vis[30010];
int dis[30010];
int n,m;
int cont;
void add(int from,int to,int w)
{
    e[cont].to=to;
    e[cont].w=w;
    e[cont].next=head[from];
    head[from]=cont++;
}
int Scan()
{
    int res = 0, ch, flag = 0;

    if((ch = getchar()) == '-')             //判断正负
        flag = 1;

    else if(ch >= '0' && ch <= '9')           //得到完整的数
        res = ch - '0';
    while((ch = getchar()) >= '0' && ch <= '9' )
        res = res * 10 + ch - '0';

    return flag ? -res : res;
}
void SPFA(int start)
{
    memset(vis,0,sizeof(vis));
    for(int i=0;i<=n;i++)dis[i]=INF;
    stack<int >s;
    s.push(start);
    vis[start]=1;
    dis[start]=0;
    while(!s.empty())
    {
        int u=s.top();
        //printf("u:%d\n",u);
        s.pop();vis[u]=0;
        for(int j=head[u];j!=-1;j=e[j].next)
        {
            int v=e[j].to;
            int w=e[j].w;
            //printf("%d %d\n",v,w);
            if(dis[v]>dis[u]+w)
            {
                dis[v]=dis[u]+w;
                if(vis[v]==0)
                {
                    s.push(v);
                    vis[v]=1;
                }
            }
        }
    }
    printf("%d\n",dis[n]);
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        cont=0;
        memset(head,-1,sizeof(head));
        for(int i=0;i<m;i++)
        {
            int x,y,w;
            x=Scan();
            y=Scan();
            w=Scan();
            add(x,y,w);
        }
        SPFA(1);
    }
}









内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值