DZY Loves Topological Sorting
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1014 Accepted Submission(s): 303
Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k
The first line, three integers n,m,k(1≤n,m≤10
Each of the next m
5 5 2 1 2 4 5 2 4 3 4 2 3 3 2 0 1 2 1 3
5 3 1 2 4 1 3 2HintCase 1. Erase the edge (2->3),(4->5). And the lexicographically largest topological ordering is (5,3,1,2,4).
题目大意:
一张有向图的拓扑序列是图中点的一个排列,满足对于图中的每条有向边(u→v)(u\rightarrow v)(u→v)
从 uuu
到 vvv,都满足uuu在排列中出现在vvv之前。
现在,DZY有一张有向无环图(DAG)。你要在最多删去kkk条边之后,求出字典序最大的拓扑序列。
题目保证了图是合法的拓扑图、这里我们就不用多担心了。这里说要删除k条边,然后求出字典序最大的拓扑排序,看到这里,我们马上就应该有一种贪心的思想:去边的时候,找度小于等于k的点,使这个点的编号尽量大,然后去度、这里求的是字典序最大的拓扑序列,我们可以应用优先队列来搞定
因为图比较大,所以这里用vector来搞定图的问题:
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
#include<vector>
using namespace std;
int now,head[200010],nex[200010],p[200010];
int vis[200010];
int degree[200010];
vector<int>map[200010];
int ans[200010];
/*
void add(int x,int y)
{
nex[++now]=head[x];
head[x]=now;
p[now]=y;
}*/
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k))
{
for(int i=1;i<=n;i++)
{
map[i].clear();
}
memset(vis,0,sizeof(vis));
memset(degree,0,sizeof(degree));
memset(head,0,sizeof(head));
now=0;
while(m--)
{
int x,y;
scanf("%d%d",&x,&y);
map[x].push_back(y);
//add(x,y);
degree[y]++;
}
priority_queue<int>s;
for(int i=1;i<=n;i++)
{
if(degree[i]<=k)
s.push(i);
}
int cont=0;
while(!s.empty())
{
int u=s.top();
s.pop();
if(vis[u]||degree[u]>k)continue;
vis[u]=1;
k-=degree[u];
ans[++cont]=u;
for(int j=0;j<map[u].size();j++)
{
int v=map[u][j];
degree[v]--;
if(degree[v]<=k&&vis[v]==0)
s.push(v);
}
/*
for(int i=head[u];i;i=nex[i])
{
int v=p[i];
degree[v]--;
if(degree[v]<=k&&vis[v]==0)
s.push(v);
}*/
}
for(int i=1;i<cont;i++)
{
printf("%d ",ans[i]);
}
printf("%d\n",ans[cont]);
}
}