function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
n = X' * (X*theta - y)
size(n)
theta = theta - alpha/m * n;
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
吴恩达的机器学习编程作业 2.gradientDescent 线性回归 迭代计算代价函数及特征变量
最新推荐文章于 2024-08-18 23:42:17 发布
本文详细介绍了梯度下降算法的基本原理及其实现过程。通过具体的MATLAB代码示例,读者可以了解到如何利用梯度下降法来更新参数θ,以最小化代价函数。文中还涉及了学习率α的选择以及迭代次数对算法效果的影响。
2047





