【线段树】【CDQ分治】回转寿司

本文介绍了解决子序列和在指定区间内的问题的多种方法,包括CDQ分治、值域线段树及树状数组等算法实现。通过具体代码示例展示了不同技术的应用。

题目大意

给你一个序列,求连续子序列和在【L,R】之间的方案数
N≤100000,|Ai|≤100000,0≤L, R≤109.

分析

这是我打的第一题CDQ(太菜了)
我对这题印象很深刻
当时大家有各种做法
好像都是线段树?
然后这时出现了一股清流
dhr的CDQ分治(orz dhr 好短啊)
然后愉悦的改完后就没管了

很久以后yzx讲CDQ分治时想到我曾经打过一道

先递归
再更新答案
然后sort
回溯
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
int n,l,r,a[100050];
LL s[100050],ans;
void solve(int p,int q){
    if(p>=q)return;
    int mid=(p+q)/2;
    solve(p,mid); solve(mid+1,q);
    int u=p,v=p;
    for(int i=mid+1;i<=q;i++){
        while(u<=mid&&s[i]-s[u]>=l)u++;
        while(v<=mid&&s[i]-s[v]>r)v++;
        ans+=max(u-v,0);
    }
    sort(s+p,s+q+1);
}
int main(){
    scanf("%d%d%d",&n,&l,&r);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        s[i]=a[i]+s[i-1];
    }
    solve(0,n);
    printf("%lld",ans);
}

现在再补上一种值域线段树的做法
对于前缀和s【i】(i表示以i为末尾)
满足

l<=sjsi<=ri<j

sjr<=si<=sjl

将s【i】插入一颗值域线段树(初始化时插入0)
对于每个s【j】查询值域在[s【j】-l,s【j】-r]之间的s【i】个数

#include<cstdio>
#define INF 10000000000
#define N 100010
#define mid ((l+r)>>1)
using namespace std;
typedef long long LL;
LL ans,sum,L,R;
int n,u,v,top,p,t[N*40],lc[N*40],rc[N*40],rt;
void Ins(int &x,LL l,LL r){
    if(!x)x=++top;
    t[x]++;
    if(l==r)return;
    if(sum<=mid)Ins(lc[x],l,mid);
    else Ins(rc[x],mid+1,r);
}
int Que(int x,LL l,LL r){
    if(!x)return 0;
    if(L<=l&&r<=R)return t[x];
    int ans=0;
    if(L<=mid)ans+=Que(lc[x],l,mid);
    if(R>mid)ans+=Que(rc[x],mid+1,r);
    return ans;
}
int main(){
    freopen("data.txt","r",stdin);
    scanf("%d%d%d",&n,&u,&v);
    Ins(rt,-INF,INF);
    for(int i=1;i<=n;i++){
        scanf("%d",&p);
        sum+=p;
        L=sum-v,R=sum-u;
        ans+=Que(rt,-INF,INF);
        Ins(rt,-INF,INF);
    }
    printf("%lld\n",ans);
}

还有一种以i为首的树状数组
链接
感觉二分可以换成two pointer
或者可以看Orz 曾老师的代码

#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
inline ll rd()
{
    ll c, r=0, s=1;
    while((c=getchar())<48||57<c) if(c=='-') s=-1;
    while(c>47&&58>c) r=10*r+c-48, c=getchar();
    return s*r;
}

#define mxn 100233
ll n, l, r, i, j;
pair<ll, ll> a[mxn];
#define fir(i) a[i].first
#define sec(i) a[i].second
//第i小的前缀的值与序号 

ll b[mxn];
inline void add(ll i, ll x) {for(;i<n+2; i+=i&-i) b[i]+=x;}
inline ll sum(ll i) {ll r=0; for(;i; i-=i&-i) r+=b[i]; return r;}

ll ans;
inline ll solve(ll m)
{
    if(m<0) return 0; ans=0;
    for(i=1; i<n+2; i++) b[i]=0;
    for(i=j=1; i<n+1; add(sec(++i), -1))
    {
        for(;j<n+1&&fir(j+1)<=fir(i)+m; add(sec(++j), 1));
        ans+=j-i-sum(sec(i));
    }
    return ans;
}

inline void debug()
{
    for(ll ii=0; ii<=fir(n+1); ii++) printf("%I64d %I64d\n", ii, solve(ii));
}

int main()
{
    n=rd(); l=rd(); r=rd(); sec(1)=1;
    for(i=2; i<=n+1; i++) a[i]=make_pair(fir(i-1)+rd(), i);
    sort(a+1, a+n+2);
    printf("%lld\n", solve(r)-solve(l-1));
    //debug();
    return 0;
}
<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛算法论文。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值