✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
光线追踪是一种计算机图形技术,它模拟光线在场景中的传播,以生成逼真的图像。它通过计算光线从光源发出,与场景中的物体交互,最终到达观察者的路径来实现。
龙格-库塔法
龙格-库塔法是一种求解常微分方程的数值方法。它通过使用一系列中间步骤来逼近方程的解,从而提高了计算的精度和效率。
光线追踪中的龙格-库塔法
在光线追踪中,光线路径可以用常微分方程来表示:
dx/dt = v(x, t)
其中:
-
x 是光线的位置
-
t 是时间
-
v 是光线的速度
使用龙格-库塔法,我们可以将该方程离散化为一系列步骤:
k1 = v(x, t)
k2 = v(x + h * k1 / 2, t + h / 2)
k3 = v(x + h * k2 / 2, t + h / 2)
k4 = v(x + h * k3, t + h)
x = x + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6
其中:
-
h 是时间步长
实现
我们可以使用以下步骤来实现基于龙格-库塔法的【光线追踪】:
-
初始化光线位置和方向
-
循环迭代,直到光线到达场景中的某个物体或超过最大步数
-
在每个迭代中,使用龙格-库塔法更新光线位置
-
检查光线是否与场景中的任何物体相交
-
如果相交,计算光线与物体的交互,并根据材料属性更新光线方向
-
重复步骤 3-5,直到光线到达观察者或超过最大步数
优点
使用龙格-库塔法进行【光线追踪】具有以下优点:
-
**高精度:**龙格-库塔法是一种高阶方法,可以提供比低阶方法更高的精度。
-
**稳定性:**龙格-库塔法是一种稳定的方法,这意味着即使时间步长较大,它也能产生合理的解。
-
**效率:**龙格-库塔法是一种高效的方法,因为它只需要少量中间步骤即可获得高精度。
局限性
龙格-库塔法也有一些局限性,包括:
-
**计算成本:**龙格-库塔法需要比低阶方法更多的计算量。
-
**自适应步长:**龙格-库塔法不能自动调整时间步长,因此可能需要手动调整以获得最佳性能。
结论
基于龙格-库塔法的【光线追踪】是一种功能强大且准确的技术,可用于生成逼真的图像。它的高精度、稳定性和效率使其成为各种图形应用程序的理想选择。然而,需要考虑其计算成本和自适应步长的局限性。

📣 部分代码
clear;TIR = 0;in = [1, 0, 1]; %Direction vector for incident rayix = [0; 0; 0]; %Position vector for ray on first planen = [0, 0, -1]; %Unit normal of first planeray_energy = 1; %Preset energy of the incident ray%The medium variable "med_var" keeps track of which medium the ray is%currently travelling through. When med_var = 1, the ray is currently in%medium 1 whereas when med_var = -1 the ray is currently travelling in%medium 2.med_var = 1;%The direction variable "dir_var" stores the z-direction in which the ray%is travelling. When dir_var = 1, the ray being followed is travelling in%the positive z-direction otherwise it is travelling in the negative%z-direction.dir_var = 1;%The lambda parameter controls the slope of the exponential%distribution from which the distances between successive interfaces%are randomly chosenlambda = 1;r_z = [0, 0, 1]; %General ray along the z-axis%Refractive indices of the two median1 = 1;n2 = 1.1;%Calculating the critical angletheta_c = asind(n1/n2);%Normalising the incident ray direction vectorin_unit = in/norm(in);i = 0;while ix(3)>=0i = i+1;ix_m(i,:) = ix;if i == 1r_z = in_unit;elser_z = [0,0,dir_var];endth_m1 = acosd(dot(r_z, -sign(r_z(3))*n)); %Calculating the incident angle%Outer if statement checks which media the refracted ray is travelling%through wih each iteration.%The inner if statements check for total internal reflection by checking%whether the refracted ray returned is complex.%NB: Total internal reflection can only occur when the light ray is%travelling from a more dense medium to a less dense mediumrec_v = 0;if med_var == -1rf = refract(r_z, sign(r_z(3))*n, n2, n1);if(isreal(rf) == 0 && th_m1>theta_c)rf = [0,0,0];TIR = i;rec_v = 1;endelserf = refract(r_z, sign(r_z(3))*n, n1, n2);endrl = reflect(r_z, sign(r_z(3))*n);if rec_v == 1th_m2 = -acosd(dot(rf,-sign(rf(3))*n));elseth_m2 = acosd(dot(rf,-sign(rf(3))*n)); %Calculating the refraction angleend%Calculating the reflection coefficient at each interfacers = ((n1*cosd(th_m1) - n2*cosd(th_m2))/(n1*cosd(th_m1) + n2*cosd(th_m2)))^2;rp = ((n1*cosd(th_m2) - n2*cosd(th_m1))/(n1*cosd(th_m2) + n2*cosd(th_m1)))^2;R_coef = (rp+rs)/2;ray_energy = ray_energy*R_coef;%Randomising the distance between successive interfaces over an exponential%distributionsy = rand(1);s = (-log(sy))/lambda;if i == 1%Calculating the rotation matrixR_mat = vecRotMat(rf,r_z);ix = ix + s*rf';rf_m(1,:) = rf;med_var = -med_var;else%By comparing a randomly generated number to the reflection coefficent at%each interface a decision is made as to whether the reflected or the%refracted ray willl be followed.if ((rand(1) <= R_coef) || (rec_v == 1))rl_r = R_mat'*rl';rl = rl_r';%Using the reflected vectorix = ix + s*rl';R_mat = vecRotMat(rl,r_z);dir_var = sign(rl(3));elsemed_var = -med_var;rf_r = R_mat'*rf';rf = rf_r';%Using the refracted vectorix = ix + s*rf';R_mat = vecRotMat(rf,r_z);dir_var = sign(rf(3));endend%Using the George Marsaglia method to generate random normal vectors%distributed evenly over the surface of a half-sphereS_n = 2;while S_n>1n_3 = -1 + rand(1,1);n_1 = -1 + 2*rand(1,1);S_n = n_3^2 + n_1^2;n(2) = 1 - 2*S_n;endn(3) = (2*n_3)*sqrt((1-S_n));n(1) = (2*n_1)*sqrt((1-S_n));n(2) = 1 - 2*S_n;endstr3 = sprintf('The ray exited the material after %d interfaces', i);disp(str3);ix_m(i+1,:) = [0,0,0];ix_m2 = zeros(i+1,3);%NB: ix_m2 is a matrix which stores the coordinates at which the light rays%intercept each plane. The columns have been re-ordered to comply with the%altered optic coordinate system.ix_m2(:,1) = ix_m(:,3);ix_m2(:,2) = ix_m(:,1);ix_m2(:,3) = ix_m(:,2);ix2(1) = ix(3);ix2(2) = ix(1);ix2(3) = ix(2);%Outer if statement checks whether TIR has occurred at interfcae 2 in which%case no plot is generatedif any(ix_m(2,:))figure();for k = 1:iif any(ix_m2(k+1,:))%Displaying each of the rays between interfacesvectarrow(ix_m2(k,:),ix_m2(k+1,:));hold on;elsehold on;vectarrow(ix_m2(k,:),ix2);endendhold on;scatter3(0,0,0,'filled','g');hold on;scatter3(ix(3),ix(1),ix(2),'filled','r');xlabel('z')ylabel('x')zlabel('y')end%Printing all the data to a text filefid = fopen('R13Data.txt','w');fprintf(fid,'Data for test run of Ray_Trace12\r\n\r\nFor this run the ray exited the material after %d interfaces\r\n\r\n',i);fprintf(fid,'Preset Parameters:\r\n\r\n');fprintf(fid,'n1 = %.2f\n n2 = %.2f\r\n',n1,n2);fprintf(fid, 'lambda = %.2f\r\n\r\n',lambda);fprintf(fid, 'Intercept Points:\r\n\r\nix_m =\r\n\r\n');for j = 1:(i)fprintf(fid, '%.5f %.5f %.5f\r\n',ix_m(j,:));endfclose(fid);
⛳️ 运行结果

🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
本文详细介绍了如何在光线追踪中使用龙格-库塔法来求解光线路径的微分方程,强调了这种方法的高精度、稳定性和效率,同时也讨论了其在计算成本和自适应步长上的挑战。
360

被折叠的 条评论
为什么被折叠?



