✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
路径规划是一项关键的技术,在许多领域都有广泛的应用,包括航空、航海、机器人等。在船舶运动规划中,考虑到复杂的遭遇场景,COLREG船舶运动规划算法是一种常用的方法。本文将介绍一种基于模型预测人工势场(MPAPF)的路径规划算法,用于解决COLREG船舶运动规划问题。
COLREG(国际航行规则)是指导船舶避碰行为的国际公约,旨在确保船舶在遭遇情况下能够安全地通过。COLREG规则的遵守对于保证船舶运输的安全至关重要。然而,在复杂的遭遇场景中,遵守COLREG规则并不总是容易的,因为船舶需要综合考虑多个因素,如目标船舶的运动、风、海流等。
为了解决COLREG船舶运动规划问题,研究者们提出了各种各样的算法。其中,基于模型预测人工势场(MPAPF)的方法是一种常见且有效的方法。该方法利用模型预测控制(MPC)技术,通过预测船舶运动,生成人工势场,以引导船舶的运动。MPAPF方法能够在考虑复杂的遭遇场景下,自动规划船舶的运动路径,以确保遵守COLREG规则并避免碰撞。
MPAPF算法的步骤如下:
-
收集环境信息:首先,需要获取与船舶运动相关的环境信息,包括目标船舶的位置、速度、航向等。这些信息可以通过雷达、AIS(自动识别系统)等设备获取。
-
预测船舶运动:利用模型预测控制技术,对目标船舶的未来运动进行预测。这可以通过建立动力学模型和环境模型来实现。动力学模型描述了船舶的运动规律,而环境模型描述了外部环境对船舶的影响。
-
生成人工势场:根据预测的目标船舶运动,生成人工势场。人工势场是一种虚拟的力场,用于引导船舶的运动。在MPAPF算法中,人工势场由两部分组成:静态势场和动态势场。静态势场与环境中的障碍物有关,用于避免船舶与障碍物的碰撞;动态势场与目标船舶的运动有关,用于引导船舶与目标船舶保持安全距离。
-
路径规划:根据生成的人工势场,进行路径规划。路径规划的目标是找到一条安全且符合COLREG规则的航线,以确保船舶能够安全通过复杂的遭遇场景。
-
运动控制:根据规划的航线,进行运动控制。运动控制可以通过调整船舶的航向、速度等参数来实现。在COLREG船舶运动规划中,运动控制需要考虑到COLREG规则的要求,以确保船舶的运动符合规则并避免碰撞。
通过以上步骤,基于模型预测人工势场的COLREG船舶运动规划算法能够在复杂的遭遇场景中,自动规划船舶的运动路径,以确保船舶的安全通行。该算法结合了模型预测控制技术和人工势场方法,能够有效地解决COLREG船舶运动规划问题。在实际应用中,可以根据具体情况对算法进行优化和改进,以提高路径规划的准确性和效率。
总之,路径规划是一项重要的技术,在复杂的遭遇场景下尤为关键。基于模型预测人工势场的COLREG船舶运动规划算法提供了一种有效的解决方案,能够确保船舶在遭遇情况下能够安全通过。随着技术的不断发展,路径规划算法将进一步完善和应用于更多领域,为人们的生活和工作带来更多便利和安全。
📣 部分代码
clear all, clc, close alladdpath('./code')ver_num_reconfig_dec = 2%% basic settingticfprintf('decrease_reconfig_84_tabu.m \n')warning('off')addpath(pathdef)mpopt = mpoption;mpopt.out.all = 0; % do not print anythingmpopt.verbose = 0;version_LODF = 0 % 1: use decrease_reconfig_algo_LODF.m% 0: use decrease_reconfig_algo.mdistancePara = 6candi_brch_bus = []; % candidate branch i added to bus jcasei=4d84_v2substation_node = 84; n_bus = 84;combine3 = 0n1 = 3n2 = 2n1_down_substation = n1+1; n2_up_ending = n2;Branch0 = Branch;brch_idx_in_loop0 = unique(brch_idx_in_loop(:));%% original network's power flow (not radial)show_biograph1 = 0show_biograph = 0from_to = show_biograph_not_sorted(Branch, substation_node, show_biograph1);mpc = generate_mpc(Bus, Branch, n_bus);res_orig = runpf(mpc, mpopt);losses = get_losses(res_orig.baseMVA, res_orig.bus, res_orig.branch);loss0 = sum(real(losses));fprintf('case84_tabu: original loop network''s loss is %.5f \n\n', loss0)% for each branch in a loop,% if open that branch does not cause isolation, check the two ending buses% of that branch for connectivity, realized by shortestpath or conncomp% calculate the lowest loss increase, print out the sorted loss increase% open the branch with lowest loss increase% stop criterion: number of buses - number of branches = 1%% ------------------------ Core algorithm ------------------------%%ff0 = Branch(:, 1); ff = ff0;tt0 = Branch(:, 2); tt = tt0;t1 = toc;if version_LODF[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...ff0, tt0, substation_node, n_bus, loss0, distancePara); %%% core algorithmelse[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...substation_node, n_bus, loss0); %%% core algorithmendt2 = toc;time_consumption.core = t2 - t1% output of core algorithmfrom_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...show_biograph1); %%% show figure, take timempc = generate_mpc(Bus, Branch, n_bus);t1 = toc;res_pf_dec = runpf(mpc, mpopt);t2 = toc;time_consumption.runpf = t2-t1;losses = get_losses(res_pf_dec.baseMVA, res_pf_dec.bus, res_pf_dec.branch);loss0_dec = sum(real(losses)) % loss =fprintf('case84_tabu: radial network obtained by my core algorithm''s loss is %.5f \n\n', ...loss0_dec);yij_dec = generate_yij_from_Branch(Branch, Branch0);Branch_loss_record = [];% record Branch and lossBranch_loss_record.core.Branch = Branch;Branch_loss_record.core.loss = loss0_dec;%% prepare force open branches for tabu: branch_idx_focused% nodes_focused = []% [branch_idx_focused] = get_branch_idx_focused_for_tabu_v2( ...% from_to, Branch0, Branch, substation_node, brch_idx_in_loop0, n_bus, ...% n1_down_substation, n2_up_ending); % to answer reviewer 5-5's question[branch_idx_focused] = get_branch_idx_focused_for_tabu( ...from_to, Branch0, Branch, substation_node, brch_idx_in_loop0, n_bus, ...n1_down_substation, n2_up_ending);%% ------------------------ Tabu algorithm ------------------------%%% run the core program for each upstream branch connected to the idx_force_openfor iter = 1:length(branch_idx_focused) % idx_force_open)fprintf('iter=%d/%d\n', iter, length(branch_idx_focused)); % idx_force_open));Branch = Branch0;Branch(branch_idx_focused(iter), :) = [];% % Branch(idx_force_open(iter), :) = [];ff0 = Branch(:, 1); ff = ff0;tt0 = Branch(:, 2); tt = tt0;brch_idx_in_loop = brch_idx_in_loop0;idx_tmp = find(brch_idx_in_loop == branch_idx_focused(iter));% % idx_tmp = find(brch_idx_in_loop == idx_force_open(iter));if isempty(idx_tmp)elsebrch_idx_in_loop(idx_tmp) = [];brch_idx_in_loop(idx_tmp:end) = brch_idx_in_loop(idx_tmp:end)-1;endt1 = toc;%%------------------- core algorithm in Tabu loop--------------------%%if version_LODF[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...ff0, tt0, substation_node, n_bus, loss0, distancePara); %%% core algorithmelse[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...substation_node, n_bus, loss0); %%% core algorithmendt2 = toc;time_consumption.tabu(iter) = t2-t1;from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...show_biograph); %%% show figure, take timempc = generate_mpc(Bus, Branch, n_bus);t1 = toc;res_pf = runpf(mpc, mpopt);t2 = toc;time_consumption.runpf(iter) = t2-t1;losses = get_losses(res_pf.baseMVA, res_pf.bus, res_pf.branch);lossi = sum(real(losses)) % loss = 0.2960loss_tabu(iter,1) = lossi;yij_dec = generate_yij_from_Branch(Branch, Branch0);% record Branch and lossBranch_loss_record.tabu(iter,1).Branch = Branch;Branch_loss_record.tabu(iter,1).loss = lossi;[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;% Vm = res_pf.bus(:, VM)';% Va = res_pf.bus(:, VA)';% ending_bus = find_ending_node(Branch, substation_node);% [ending_bus'; Vm(ending_bus)];% % ending_bus = [6 14 72 22 24 83 41 42 32 33 37 55 63 8 9 10 62 71 13 82]';% % [ending_bus'; Vm(ending_bus)]%% ---------------------one open and one close---------------------%%% prepare nodes_focused for one_open_one_closet1 = toc;[nodes_focused] = get_nodes_focused_o1c1( ...from_to, Branch, Branch0, substation_node, brch_idx_in_loop, ...n1_down_substation, n2_up_ending);loss_before_switch0 = lossi;if combine3[record_o1c1_loss_dec, loss_after_switch_combine_two_o1c1, Branch_loss] = ...one_open_one_close_combine3(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);else[record_o1c1_loss_dec, loss_after_switch_combine_two_o1c1, Branch_loss] = ...one_open_one_close(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);endt2 = toc;time_consumption.tabu_o1c1(iter) = t2-t1;% record Branch and lossBranch_loss_record.tabu_o1c1_dec{iter}.Branch = Branch_loss.Branch_o1c1_dec;% Branch_loss_record.tabu_o1c1_dec(iter,1).Branch = Branch_loss.Branch_o1c1_dec;Branch_loss_record.tabu_o1c1_dec{iter}.loss = Branch_loss.loss_o1c1_dec;Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.Branch = ...Branch_loss.Branch_after_switch_combine_two_o1c1;Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.loss = ...Branch_loss.loss_after_switch_combine_two_o1c1;min_loss_o1c1 = min(record_o1c1_loss_dec(:,1));fprintf('case84_tabu: minimum loss obtained after ''one open and one close'': %.5f\n', ...min_loss_o1c1);min_loss_combine_two_o1c1 = 1e9;fprintf('case84_tabu: loss obtained after combine two ''one open and one close'': \n')for i = 1:length(loss_after_switch_combine_two_o1c1)temp = min(loss_after_switch_combine_two_o1c1{i});if temp<min_loss_combine_two_o1c1min_loss_combine_two_o1c1 = temp;endfprintf(' %.5f \n', temp);endfprintf('case84_tabu: minimum loss obtained after combine two ''one open and one close'': %.5f \n', ...min_loss_combine_two_o1c1)%% ---------------------two open and two close---------------------%%flag_2o2c = 0if flag_2o2c == 1t1 = toc;loss_before_switch0 = lossi;[record_o2c2_loss_dec, loss_after_switch_combine_two_o2c2] = ...two_open_two_close(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);t2 = toc;time_consumption.tabu_o2c2(iter) = t2-t1;min_loss_o2c2 = min(record_o2c2_loss_dec(:,1));fprintf('case84_tabu: minimum loss obtained after ''two open and two close'': %.5f\n', ...min_loss_o2c2);min_loss_combine_two_o2c2 = 1e9;fprintf('case84_tabu: loss obtained after combine two ''two open and two close'': \n')for i = 1:length(loss_after_switch_combine_two_o2c2)temp = min(loss_after_switch_combine_two_o2c2{i});if temp<min_loss_combine_two_o2c2min_loss_combine_two_o2c2 = temp;endfprintf(' %.5f \n', temp);endfprintf('case84_tabu: minimum loss obtained after combine two ''two open and two close'': %.5f \n', ...min_loss_combine_two_o2c2)res_save{iter}.min_loss_o2c2 = min_loss_o2c2;res_save{iter}.min_loss_combine_two_o2c2 = min_loss_combine_two_o2c2;endres_save{iter}.yij_dec = yij_dec;res_save{iter}.Branch = Branch;res_save{iter}.lossi = lossi;res_save{iter}.record_o1c1_loss_dec = record_o1c1_loss_dec;res_save{iter}.min_loss_o1c1 = min_loss_o1c1;res_save{iter}.min_loss_combine_two_o1c1 = min_loss_combine_two_o1c1;% save(file_name, 'yij_dec', 'Branch', 'lossi');file_name = ['id', num2str(ver_num_reconfig_dec), ...'_case84_yij_Branch', '.mat'];save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...'time_consumption');endfile_name = ['id', num2str(ver_num_reconfig_dec), ...'_case84_yij_Branch', '.mat'];save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...'time_consumption');% find_all_losses(Branch_loss_record);fprintf('case84_tabu: losses obtained after applying tabu strategy: \n') % 0.28343 zjp 2018-1-18fprintf('%.5f \n', loss_tabu)fprintf('----- min: %.5f -----\n', min(loss_tabu))min_loss = 1e9;for i = 1:length(res_save)if min_loss>res_save{i}.min_loss_o1c1min_loss = res_save{i}.min_loss_o1c1 ;endif min_loss>res_save{i}.min_loss_combine_two_o1c1min_loss = res_save{i}.min_loss_combine_two_o1c1 ;endendmin_loss_o1c1 = min_lossif flag_2o2c == 1min_loss = 1e9;for i = 1:length(res_save)if min_loss>res_save{i}.min_loss_o2c2min_loss = res_save{i}.min_loss_o2c2 ;endif min_loss>res_save{i}.min_loss_combine_two_o2c2min_loss = res_save{i}.min_loss_combine_two_o2c2 ;endendmin_loss_o2c2 = min_lossendfprintf('\n')ver_num_reconfig_dec
⛳️ 运行结果

本文介绍了一种在复杂遭遇场景下用于解决COLREG船舶运动规划问题的算法,即基于模型预测人工势场(MPAPF)的方法。通过预测船舶运动,生成人工势场引导船舶路径,确保遵守COLREG规则并避免碰撞。算法结合了MPC和势场策略,提高了船舶在复杂环境中的安全性。
1528

被折叠的 条评论
为什么被折叠?



