✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在通信系统中,大规模 MIMO 技术已经成为了一个热门话题。大规模 MIMO 技术能够利用多个天线来传输和接收信号,从而提高了信号的可靠性和传输速度。然而,由于信号传输的复杂性,大规模 MIMO 技术也面临着一些挑战。其中一个挑战就是如何在大规模 MIMO 系统中进行检测。为了解决这个问题,近似消息传递(AMP)技术被提出,并被广泛应用于大规模 MIMO 系统中。
AMP 技术是一种基于概率推断的算法,它能够在大规模 MIMO 系统中高效地进行检测。AMP 技术的核心思想是将复杂的检测问题转化为简单的推断问题。在 AMP 技术中,每个接收天线都会生成一个消息,这个消息包含了接收到的信号和噪声的统计信息。这些消息会被传递到下一个节点,然后根据这些消息进行推断和计算。最终,AMP 技术能够得出准确的检测结果。
AMP 技术在大规模 MIMO 系统中的应用已经被证明是非常有效的。它能够在高速移动的环境下实现高速数据传输,并且能够在复杂的干扰环境下实现可靠的信号检测。此外,AMP 技术还能够在低功耗的设备上实现高效的检测,这对于物联网应用非常重要。
虽然 AMP 技术在大规模 MIMO 系统中的应用非常成功,但是它也存在一些局限性。例如,AMP 技术需要大量的计算资源来进行推断和计算,这可能会导致系统的延迟增加。此外,AMP 技术对于信号的噪声和非线性特性比较敏感,这可能会影响检测的准确性。
总之,近似消息传递(AMP)技术是一种非常有效的大规模 MIMO 检测技术。它能够在复杂的环境下实现高效的信号检测,并且能够在低功耗的设备上实现高效的检测。虽然 AMP 技术存在一些局限性,但是它的优点远远超过了缺点。因此,AMP 技术有望成为未来大规模 MIMO 系统中最常用的检测技术之一。
📣 部分代码
function [MinCost, Hamming,Best] = BBO(ProblemFunction, DisplayFlag, ProbFlag, RandSeed)% Biogeography-based optimization (BBO) software for minimizing a general function% INPUTS: ProblemFunction is the handle of the function that returns% the handles of the initialization, cost, and feasibility functions.% DisplayFlag = true or false, whether or not to display and plot results.% ProbFlag = true or false, whether or not to use probabilities to update emigration rates.% RandSeed = random number seed% OUTPUTS: MinCost = array of best solution, one element for each generation% Hamming = final Hamming distance between solutions% CAVEAT: The "ClearDups" function that is called below replaces duplicates with randomly-generated% individuals, but it does not then recalculate the cost of the replaced individuals.if ~exist('DisplayFlag', 'var')DisplayFlag = true;endif ~exist('ProbFlag', 'var')ProbFlag = false;endif ~exist('RandSeed', 'var')RandSeed = round(sum(100*clock));end[OPTIONS, MinCost, AvgCost, InitFunction, CostFunction, FeasibleFunction, ...MaxParValue, MinParValue, Population] = Init(DisplayFlag, ProblemFunction, RandSeed);Population = CostFunction(OPTIONS, Population);OPTIONS.pmodify = 1; % habitat modification probabilityOPTIONS.pmutate = 0.005; % initial mutation probabilityKeep = 2; % elitism parameter: how many of the best habitats to keep from one generation to the nextlambdaLower = 0.0; % lower bound for immigration probabilty per genelambdaUpper = 1; % upper bound for immigration probabilty per genedt = 1; % step size used for numerical integration of probabilitiesI = 1; % max immigration rate for each islandE = 1; % max emigration rate, for each islandP = OPTIONS.popsize; % max species count, for each island% Initialize the species count probability of each habitat% Later we might want to initialize probabilities based on costfor j = 1 : length(Population)Prob(j) = 1 / length(Population);end% Begin the optimization loopfor GenIndex = 1 : OPTIONS.Maxgen% Save the best habitats in a temporary array.for j = 1 : KeepchromKeep(j,:) = Population(j).chrom;costKeep(j) = Population(j).cost;end% Map cost values to species counts.[Population] = GetSpeciesCounts(Population, P);% Compute immigration rate and emigration rate for each species count.% lambda(i) is the immigration rate for habitat i.% mu(i) is the emigration rate for habitat i.[lambda, mu] = GetLambdaMu(Population, I, E, P);if ProbFlag% Compute the time derivative of Prob(i) for each habitat i.for j = 1 : length(Population)% Compute lambda for one less than the species count of habitat i.lambdaMinus = I * (1 - (Population(j).SpeciesCount - 1) / P);% Compute mu for one more than the species count of habitat i.muPlus = E * (Population(j).SpeciesCount + 1) / P;% Compute Prob for one less than and one more than the species count of habitat i.% Note that species counts are arranged in an order opposite to that presented in% MacArthur and Wilson's book - that is, the most fit% habitat has index 1, which has the highest species count.if j < length(Population)ProbMinus = Prob(j+1);elseProbMinus = 0;endif j > 1ProbPlus = Prob(j-1);elseProbPlus = 0;endProbDot(j) = -(lambda(j) + mu(j)) * Prob(j) + lambdaMinus * ProbMinus + muPlus * ProbPlus;end% Compute the new probabilities for each species count.Prob = Prob + ProbDot * dt;Prob = max(Prob, 0);Prob = Prob / sum(Prob);end% Now use lambda and mu to decide how much information to share between habitats.lambdaMin = min(lambda);lambdaMax = max(lambda);for k = 1 : length(Population)if rand > OPTIONS.pmodifycontinue;end% Normalize the immigration rate.lambdaScale = lambdaLower + (lambdaUpper - lambdaLower) * (lambda(k) - lambdaMin) / (lambdaMax - lambdaMin);% Probabilistically input new information into habitat ifor j = 1 : OPTIONS.numVarif rand < lambdaScale% Pick a habitat from which to obtain a featureRandomNum = rand * sum(mu);Select = mu(1);SelectIndex = 1;while (RandomNum > Select) & (SelectIndex < OPTIONS.popsize)SelectIndex = SelectIndex + 1;Select = Select + mu(SelectIndex);endIsland(k,j) = Population(SelectIndex).chrom(j);elseIsland(k,j) = Population(k).chrom(j);endendendif ProbFlag% MutationPmax = max(Prob);MutationRate = OPTIONS.pmutate * (1 - Prob / Pmax);% Mutate only the worst half of the solutionsPopulation = PopSort(Population);for k = round(length(Population)/2) : length(Population)for parnum = 1 : OPTIONS.numVarif MutationRate(k) > randIsland(k,parnum) = floor(MinParValue + (MaxParValue - MinParValue + 1) * rand);endendendend% Replace the habitats with their new versions.for k = 1 : length(Population)Population(k).chrom = Island(k,:);end% Make sure each individual is legal.Population = FeasibleFunction(OPTIONS, Population);% Calculate costPopulation = CostFunction(OPTIONS, Population);% Sort from best to worstPopulation = PopSort(Population);% Replace the worst with the previous generation's elites.n = length(Population);for k = 1 : KeepPopulation(n-k+1).chrom = chromKeep(k,:);Population(n-k+1).cost = costKeep(k);end% Make sure the population does not have duplicates.Population = ClearDups(Population, MaxParValue, MinParValue);% Sort from best to worstPopulation = PopSort(Population);% Compute the average cost[AverageCost, nLegal] = ComputeAveCost(Population);% Display info to screenMinCost = [MinCost Population(1).cost];AvgCost = [AvgCost AverageCost];if DisplayFlagdisp(['The best and mean of Generation # ', num2str(GenIndex), ' are ',...num2str(MinCost(end)), ' and ', num2str(AvgCost(end))]);endendBest=Conclude(DisplayFlag, OPTIONS, Population, nLegal, MinCost);% Obtain a measure of population diversity% for k = 1 : length(Population)% Chrom = Population(k).chrom;% for j = MinParValue : MaxParValue% indices = find(Chrom == j);% CountArr(k,j) = length(indices); % array containing gene counts of each habitat% end% endHamming = 0;% for m = 1 : length(Population)% for j = m+1 : length(Population)% for k = MinParValue : MaxParValue% Hamming = Hamming + abs(CountArr(m,k) - CountArr(j,k));% end% end% endif DisplayFlagdisp(['Diversity measure = ', num2str(Hamming)]);endreturn;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [Population] = GetSpeciesCounts(Population, P)% Map cost values to species counts.% This loop assumes the population is already sorted from most fit to least fit.for i = 1 : length(Population)if Population(i).cost < infPopulation(i).SpeciesCount = P - i;elsePopulation(i).SpeciesCount = 0;endendreturn;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function [lambda, mu] = GetLambdaMu(Population, I, E, P)% Compute immigration rate and extinction rate for each species count.% lambda(i) is the immigration rate for individual i.% mu(i) is the extinction rate for individual i.for i = 1 : length(Population)lambda(i) = I * (1 - Population(i).SpeciesCount / P);mu(i) = E * Population(i).SpeciesCount / P;endreturn;
⛳️ 运行结果

🔗 参考文献
[1] 卞海红,徐国政,王新迪.一种基于PSO和双向GRU的短期负荷预测模型:CN202111215326.2[P].CN202111215326.2[2023-09-18].
[2] 马莉,潘少波,代新冠,等.基于PSO-Adam-GRU的煤矿瓦斯浓度预测模型[J].西安科技大学学报, 2020, 40(2):6.DOI:CNKI:SUN:XKXB.0.2020-02-024.
本文介绍了大规模MIMO技术中使用近似消息传递(AMP)算法进行高效信号检测的方法,强调了其在复杂环境下的优点和在低功耗设备上的适用性,同时讨论了AMP技术存在的计算资源消耗和对非线性特性的敏感性。
1054

被折叠的 条评论
为什么被折叠?



