【多无人机】基于 Nature Inspired 算法实现多无人机的路径规划附matlab代码

该文介绍了热爱科研的Matlab仿真开发者如何运用智能优化算法、神经网络等技术解决雷达通信、无线传感器、电力系统等问题。文中包含代码示例,涉及信号处理、图像处理、路径规划等多个领域的应用,并提供相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference.

⛄ 部分代码

function sdot = quadEOM_readonly(t, s, F, M, params)

% QUADEOM_READONLY Solve quadrotor equation of motion

%   quadEOM_readonly calculate the derivative of the state vector

%

% INPUTS:

% t      - 1 x 1, time

% s      - 13 x 1, state vector = [x, y, z, xd, yd, zd, qw, qx, qy, qz, p, q, r]

% F      - 1 x 1, thrust output from controller (only used in simulation)

% M      - 3 x 1, moments output from controller (only used in simulation)

% params - struct, output from nanoplus() and whatever parameters you want to pass in

%

% OUTPUTS:

% sdot   - 13 x 1, derivative of state vector s

%

% NOTE: You should not modify this function

% See Also: quadEOM_readonly, nanoplus

%************ EQUATIONS OF MOTION ************************

% Limit the force and moments due to actuator limits

A = [0.25,                      0, -0.5/params.arm_length;

     0.25,  0.5/params.arm_length,                      0;

     0.25,                      0,  0.5/params.arm_length;

     0.25, -0.5/params.arm_length,                      0];

prop_thrusts = A*[F;M(1:2)]; % Not using moment about Z-axis for limits

prop_thrusts_clamped = max(min(prop_thrusts, params.maxF/4), params.minF/4);

B = [                 1,                 1,                 1,                  1;

                      0, params.arm_length,                 0, -params.arm_length;

     -params.arm_length,                 0, params.arm_length,                 0];

F = B(1,:)*prop_thrusts_clamped;

M = [B(2:3,:)*prop_thrusts_clamped; M(3)];

% Assign states

x = s(1);

y = s(2);

z = s(3);

xdot = s(4);

ydot = s(5);

zdot = s(6);

qW = s(7);

qX = s(8);

qY = s(9);

qZ = s(10);

p = s(11);

q = s(12);

r = s(13);

quat = [qW; qX; qY; qZ];

bRw = QuatToRot(quat);

wRb = bRw';

% Acceleration

accel = 1 / params.mass * (wRb * [0; 0; F] - [0; 0; params.mass * params.grav]);

% Angular velocity

K_quat = 2; %this enforces the magnitude 1 constraint for the quaternion

quaterror = 1 - (qW^2 + qX^2 + qY^2 + qZ^2);

qdot = -1/2*[0, -p, -q, -r;...

             p,  0, -r,  q;...

             q,  r,  0, -p;...

             r, -q,  p,  0] * quat + K_quat*quaterror * quat;

% Angular acceleration

omega = [p;q;r];

pqrdot   = params.invI * (M - cross(omega, params.I*omega));

% Assemble sdot

sdot = zeros(13,1);

sdot(1)  = xdot;

sdot(2)  = ydot;

sdot(3)  = zdot;

sdot(4)  = accel(1);

sdot(5)  = accel(2);

sdot(6)  = accel(3);

sdot(7)  = qdot(1);

sdot(8)  = qdot(2);

sdot(9)  = qdot(3);

sdot(10) = qdot(4);

sdot(11) = pqrdot(1);

sdot(12) = pqrdot(2);

sdot(13) = pqrdot(3);

end

⛄ 运行结果

⛄ 参考文献

[1]  Agarwal D ,  Bharti P S . Comparison of Nature-Inspired Approaches for Path Planning Problem of Mobile Robots in MATLAB[J].  2022.

[2] 黄鼎勇, 周芳, 路遥,等. 基于冲突搜索的数字战场多无人机路径规划与仿真[J]. 指挥信息系统与技术, 2022(004):013.

[3] 邓敏, 陈志. 基于k度平滑的多无人机协调路径规划方法[J]. 计算机工程与设计, 2021, 042(008):2387-2394.

[4] 陈海, 何开锋, 钱炜祺. 多无人机协同覆盖路径规划 优先出版[J]. 航空学报, 2016.

[5] 马云红, 周德云. 无人机路径规划算法与仿真[J]. 火力與指揮控制, 2007, 32.​

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值