基于Matlab模拟BEMD图像处理

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

Recent developments in analysis methods on the non-linear and non-stationary data have received large attention by the image analysts. In 1998, Huang introduced the empirical mode decomposition (EMD) in signal processing. The EMD approach, fully unsupervised, proved reliable monodimensional (seismic and biomedical) signals. The main contribution of our approach is to apply the EMD to texture extraction and image filtering, which are widely recognized as a difficult and challenging computer vision problem. We developed an algorithm based on bidimensional empirical mode decomposition (BEMD) to extract features at multiple scales or spatial frequencies. These features, called intrinsic mode functions, are extracted by a sifting process. The bidimensional sifting process is realized using morphological operators to detect regional maxima and thanks to radial basis function for surface interpolation. The performance of the texture extraction algorithms, using BEMD method, is demonstrated in the experiment with both synthetic and natural images.

⛄ 部分代码

%   moy_env.m

%   BEMD 

%

%   J.C. Nunes, Y. Bouaoune, E. Del閏helle, N. Oumar, and Ph. Bunel.

%   "Image analysis by bidimensional empirical mode decomposition".

%   Image and Vision Computing Journal (IVC), (to appear), 2003. 

function [ID,Difference,SD]=moy_env(I,IS,IF,SDmax,SDmax_prec,precision)

%precision=0.08;    %   pr閏ision du crit鑢e d'arret

I=double(I);

    

Difference=0;  % Si difference entre la moyenne des 2 enveloppes SUP ET INF

               % et l'image originale est NULLE ======> Difference=1

[t1 t2]=size(I);

eps=1;  % introduit dans le calcul de SD pour 関iter des divisions par z閞o

ID=I;   % ID=image r閟idu, on calcule la diff閞ence entre l'image I et la moyenne des 2 enveloppes sup et inf 

IS=double(IS);  %enveloppe sup

IF=double(IF);  %enveloppe inf

IM=(IS+IF)/2;   % Moyenne des 2 enveloppes sup et inf

IDif=I-IM;        % Difference entre l'image de d閜art et l'image moyenne

%figure,imagesc(IDif),colormap(gray),title('IDif'),truesize

SD=sum((IDif(:).^2)./(I(:).^2+eps));

%SD=sum((IDif(:).^2)./(I(:).^2+eps));

a=abs(SD-SDmax_prec);

b=(precision*SD);        % maintenant on prend celui-l?

if a<b

    Difference=1;

    ID=I; 

    disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   a<b %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

else      

    if SD<SDmax

        Difference=1;

        ID=I; 

%        figure,imagesc(I),colormap(gray),title('mode obtenu'),truesize

    else  % Difference=0

        Difference=0;

        ID=IDif;        % Difference entre l'image de d閜art et l'image moyenne

    end

end

clear IMM IS IF Ib IDif

return

⛄ 运行结果

⛄ 参考文献

[1] Nunes J C ,  Bouaoune Y , ric Deléchelle, et al. Image analysis by bidimensional empirical mode decomposition[J]. Image & Vision Computing, 2003, 21:1019-1026.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值