一种使用无线传感器网络预测圆形区域入侵检测的 k 屏障数量的深度学习方法附matlab代码

本文聚焦无线传感器网络(WSN)在边境入侵检测和监视的应用。提出基于全连接前馈人工神经网络(ANN)的深度学习架构,用于预测k - barriers数量以实现快速入侵检测。用四个潜在特征训练评估模型,该方法在准确性和计算复杂度上优于其他基准算法。

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

无线传感器网络 (WSN) 是一项很有前途的技术,几乎在各行各业都有广泛的应用。WSN 的重要应用之一是在边境地区和防御设施中进行入侵检测和监视。边境地区绵延数百至数千英里,因此不可能巡逻整个边境地区。因此,敌人可能会在没有监视的情况下从任何地点进入,造成人员伤亡或摧毁军事设施。WSN 可以成为边界地区入侵检测和监视问题的可行解决方案。在边境地区和附近的军事营地等关键地区发现敌人是一项时间敏感的任务,因为几秒钟的延迟可能会造成灾难性的后果。所以,当敌人进入部署系统的范围时,设计能够识别和检测敌人的系统就变得势在必行。在本文中,我们提出了一种基于完全连接的前馈人工神经网络 (ANN) 的深度学习架构,用于准确预测 k-barriers 的数量,以实现快速入侵检测和预防。我们使用四个潜在特征训练和评估了前馈 ANN 模型,即圆形区域的面积、传感器的感应范围、传感器的传输范围以及高斯和均匀传感器分布的传感器数量。这些特征是通过蒙特卡洛模拟提取的。在这样做,我们发现该模型准确地预测了高斯分布和均匀传感器分布的 k-barrier 数量,前者的相关系数 (R = 0.78) 和均方根误差 (RMSE = 41.15),前者的 R = 0.79 和 RMSE = 48.36后者。此外,所提出的方法在准确性和计算时间复杂度方面优于其他基准算法。

⛄ 部分代码

%%  Code for "A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using wireless sensor networks" 

%%  Data from https://www.kaggle.com/datasets/abhilashdata/ffannid-intrusion-detection-in-wsns

%%  IF you are using this code then please cite the following paper;

%%  Singh, A., Amutha, J., Nagar, J., & Sharma, S. (2022). A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using wireless sensor networks. Expert Systems with Applications, 118588.

clc

clear all

data=xlsread('circ_bsm_gu.xlsx');

% rng(0) %seed for reproducibility

rand_pos = (randperm(length(data)));

for k = 1:length(data)

    data(k) = data(rand_pos(k));

end

Area=data(:,1);

SensingRange=data(:,2);

Transmissionrange=data(:,3);

No_of_sensor=data(:,4);

X=[Area,SensingRange,Transmissionrange,No_of_sensor];

Y=data(:,end-1);   %end uniform

x = X';

t = Y';

ts=tic;

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.

% 'trainscg' uses less memory. Suitable in low memory situations.

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation.

⛄ 运行结果

⛄ 参考文献

Singh, A., Amutha, J., Nagar, J., & Sharma, S. (2022). A deep learning approach to predict the number of k-barriers for intrusion detection over a circular region using wireless sensor networks. Expert Systems with Applications, 118588.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

import cv2 as cv import numpy as np def hough_circle(image): #因为霍夫检测对噪声很明显,所以需要先滤波一下。 dst =cv.pyrMeanShiftFiltering(image,10,100) cimage=cv.cvtColor(dst,cv.COLOR_BGR2GRAY) circles = cv.HoughCircles(cimage,cv.HOUGH_GRADIENT,1,40,param1=40,param2=29,minRadius=30,maxRadius=0) #把circles包含的圆心和半径的值变为整数 circles = np.uint16(np.around(circles)) for i in circles[0]: cv.circle(image,(i[0],i[1]),i[2],(0,255,0),3) cv.imshow("circle",image) src = cv.imread("E:/opencv/picture/coins.jpg") cv.imshow("inital_window",src) hough_circle(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫圆变换的基本思路是认为图像上每一个非零像素点都有可能是一个潜在的圆上的一点, 跟霍夫线变换一样,也是通过投票,生成累积坐标平面,设置一个累积权重来定位圆。 在笛卡尔坐标系中圆的方程为: 其中(a,b)是圆心,r是半径,也可以表述为: 即 在笛卡尔的xy坐标系中经过某一点的所有圆映射到abr坐标系中就是一条三维的曲线: 经过xy坐标系中所有的非零像素点的所有圆就构成了abr坐标系中很多条三维的曲线。 在xy坐标系中同一个圆上的所有点的圆方程是一样的,它们映射到abr坐标系中的是同一个点,所以在abr坐标系中该点就应该有圆的总像素N0个曲线相交。 通过判断abr中每一点的相交(累积)数量,大于一定阈值的点就认为是圆。 以上是标准霍夫圆变换实现算法。 问题是它的累加到一个三维的空间,意味着比霍夫线变换需要更多的计算消耗。 Opencv霍夫圆变换对标准霍夫圆变换做了运算上的优化。 它采用的是“霍夫梯度法”。它的检测思路是去遍历累加所有非零点对应的圆心,对圆心进行考量。 如何定位圆心呢?圆心一定是在圆上的每个点的模向量上,即在垂直于该点并且经过该点的切线的垂直线上,这些圆上的模向量的交点就是圆心。 霍夫梯度法就是要去查找这些圆心,根据该“圆心”上模向量相交数量的多少,根据阈值进行最终的判断。 bilibili: 注意: 1.OpenCV的霍夫圆变换函数原型为:HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles image参数表示8位单通道灰度输入图像矩阵。 method参数表示圆检测方法,目前唯一实现的方法是HOUGH_GRADIENT。 dp参数表示累加器与原始图像相比的分辨率的反比参数。例如,如果dp = 1,则累加器具有与输入图像相同的分辨率。如果dp=2,累加器分辨率是元素图像的一半,宽度和高度也缩减为原来的一半。 minDist参数表示检测到的两个圆心之间的最小距离。如果参数太小,除了真实的一个圆圈之外,可能错误地检测到多个相邻的圆圈。如果太大,可能会遗漏一些圆圈。 circles参数表示检测到的圆的输出向量,向量内第一个元素是圆的横坐标,第二个是纵坐标,第三个是半径大小。 param1参数表示Canny边缘检测的高阈值,低阈值会被自动置为高阈值的一半。 param2参数表示圆心检测的累加阈值,参数值越小,可以检测越多的假圆圈,但返回的是与较大累加器值对应的圆圈。 minRadius参数表示检测到的圆的最小半径。 maxRadius参数表示检测到的圆的最大半径。 2.OpenCV画圆的circle函数原型:circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img img参数表示源图像。 center参数表示圆心坐标。 radius参数表示圆的半径。 color参数表示设定圆的颜色。 thickness参数:如果是正数,表示圆轮廓的粗细程度。如果是负数,表示要绘制实心圆。 lineType参数表示圆线条的类型。 shift参数表示圆心坐标和半径值中的小数位数。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值