1 内容介绍
遥感影像数据量大,需要通过低复杂度算法进行压缩星载设备。具有自适应扫描顺序的二叉树编码(BTCA)是一种有效的算法为使命。但是,对于大尺度的遥感影像,BTCA 需要大量的内存,并且确实不提供随机访问属性。在本文中,我们提出了一种基于 BTCA 和优化截断。小波图像首先被分成几个单独编码的块由 BTCA 提供。根据 BTCA 的性质,我们仔细选择每个区块的有效截断点优化rate-distortion比率,使压缩比更高,内存要求更低并获得随机访问属性。没有任何熵编码,所提出的方法很简单而且速度快,非常适合星载设备。实验在三个遥控器上进行传感图像集,结果表明它可以显着提高 PSNR、SSIM 和 VIF,以及主观视觉体验。


2 仿真代码
%% matlab code for BTOT(Binary Tree and Optimized Truncation)% unoptimized, without head information, without entropy coding.%% Reference:%% Ke-Kun Huang, Hui Liu, Chuan-Xian Ren, Yu-Feng Yu and Zhao-Rong Lai.% Remote sensing image compression based on binary tree and optimized truncation.% Digital Signal Processing, vol. 64, pp. 96-106, 2017.% http://dx.doi.org/10.1016/j.dsp.2017.02.008%% Email: kkcocoon@163.com% Homepage: http://www.scholat.com/huangkekunclc;clear;close all%% ----------- Input ----------------imname = 'SanDiego.bmp';I_Orig = double(imread(imname));[row, col] = size(I_Orig);blksize = 64;%% ----------- Wavelet Decomposition -------------n_log = log2(row);level = floor(n_log);I_Dec = wavecdf97(I_Orig, level);n_min = 1;brates = [0.0625, 0.125, 0.25, 0.5, 1];%% ----------- Coding ----------------[out_code, blklen, n_max, n_min, out_S,out_R,out_N] = encode(I_Dec, blksize, n_min);%% ----------- Decoding ----------------disp([ 'aa_BTOT_' imname(1:end-4) '=[']);for rate=bratesI_DecR = decode(out_code, blklen, n_max, n_min, blksize, row, rate, out_S,out_R,out_N);I_Rec = wavecdf97(I_DecR, -level);MSE = sum(sum((I_Rec - I_Orig).^2))/(row*row);PSNR = 10*log10(255*255/MSE);disp([sprintf('%.4f',rate) ' ' sprintf('%.2f',PSNR)]);enddisp('];');figuresubplot(121)imshow(I_Orig,[]);title('原图')subplot(122)imshow(I_Rec,[]);title('压缩图')
3 运行结果

4 参考文献
[1] A. Gunes, M.B. Guldogan, Joint underwater target detection and tracking with
the Bernoulli fifilter using an acoustic vector sensor, Digit. Signal Process. 48 (1)
(2016) 246–258.
[2] S. U
ˇ
gur,
O. Arıkan, A.C. Gürbüz, SAR image reconstruction by expectation max
imization based matching pursuit, Digit. Signal Process. 37 (2) (2015) 75–84.
[3] M.M. Nielsen, Remote sensing for urban planning and management: the use of
window-independent context segmentation to extract urban features in Stock
holm, Comput. Environ. Urban Syst. 52 (7) (2015) 1–9.
[4] J.M. Shapiro, Embedded image coding using zerotrees of wavelet coeffiffifficients,
IEEE Trans. Signal Process. 41 (12) (1993) 3445–3462.
[5] A. Said, W.A. Pearlman, A new, fast, and effiffifficient image codec based on set
partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video Technol. 6 (3)
(1996) 243–250.
[6] W.A. Pearlman, A. Islam, N. Nagaraj, A. Said, Effiffifficient, low-complexity image
coding with a set-partitioning embedded block coder, IEEE Trans. Circuits Syst.
Video Technol. 14 (11) (2004) 1219–1235.
[7] A. Munteanu, J. Cornelis, G.V.D. Auwera, P. Cristea, Wavelet image compression
– the quadtree coding approach, IEEE Trans. Inf. Technol. Biomed. 3 (3) (1999)
176–185.
[8] D. Taubman, High performance scalable image compression with EBCOT, IEEE
Trans. Image Process. 9 (7) (2000) 1158–1170
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。

被折叠的 条评论
为什么被折叠?



