1 内容介绍
超声流量计的回波信号中通常存在噪声干扰,导致回波信号难以准确定位.为滤除超声波回波信号中的噪声,提出了一种基于优化变分模态分解(VMD)算法的信号去噪方法.所提方法首先利用互信息准则的信息熵将遗传算法与VMD相关联.然后,将样本熵作为适应度函数,自适应性地优化VMD算法中的参数组合.最后,对原始信号进行分解,利用相关系数计算出有效信号,并将有效信号进一步去噪后进行重构.仿真结果表明,所提方法能有效滤除超声波回波信号中的噪声并且能够完整的保留有用信号.
利用VMD算法对原始信号进行分解时需要设置参数。在研究过程中发现,如果设置一个参数不变,优化另一个参数,这会忽略两个参数间的相互作用,使得最终结果陷入局部优化的困境。遗传算法是一种智能优化算法,具有较强的全局非线性能力,将遗传算法与MI的自适应性相结合,可实现对目标函数(原始信号)的全局优化。利用遗传算法求解优化问题的过程是利用种群搜索技术将种群作为一组问题解,通过对当前种群施加类似生物遗传环境因素的选择、交叉、变异等一系列的遗传操作来产生新一代的种群,并逐步使种群达到包含近似最优解的状态。遗传算法中的种群就是可行解集(目标函数),而适应度函数是用来评价的函数值,故构造一个适应度函数用来作为生成最优解的判决函数尤为重要。本文将样本熵作为适应度函数,样本熵是通过信号中产生新模式的概率大小来衡量时间序列复杂性的,熵值最小时信号的复杂度最低,样本熵的定义为
2 仿真代码
<span style="color:#333333"><span style="background-color:rgba(0, 0, 0, 0.03)"><code>function ret = Cross(pcross, lenchrom, chrom, sizepop, bound)</code><code></code><code> <span style="color:#ca7d37">for</span> i = <span style="color:#0e9ce5">1</span>:sizepop</code><code></code><code> pick = <span style="color:#ca7d37">rand</span>(<span style="color:#0e9ce5">1</span>, <span style="color:#0e9ce5">2</span>);</code><code></code><code> <span style="color:#ca7d37">while</span> prod(pick) == <span style="color:#0e9ce5">0</span></code><code> pick = <span style="color:#ca7d37">rand</span>(<span style="color:#0e9ce5">1</span>, <span style="color:#0e9ce5">2</span>);</code><code> end</code><code></code><code> <span style="color:#ca7d37">index</span> = ceil(pick .* sizepop);</code><code></code><code> pick = <span style="color:#ca7d37">rand</span>;</code><code></code><code> <span style="color:#ca7d37">while</span> pick == <span style="color:#0e9ce5">0</span></code><code> pick = <span style="color:#ca7d37">rand</span>;</code><code> end</code><code></code><code> <span style="color:#ca7d37">if</span> pick > pcross</code><code> <span style="color:#ca7d37">continue</span>;</code><code> end</code><code></code><code> flag = <span style="color:#0e9ce5">0</span>;</code><code></code><code> <span style="color:#ca7d37">while</span> flag == <span style="color:#0e9ce5">0</span></code><code></code><code> pick = <span style="color:#ca7d37">rand</span>;</code><code></code><code> <span style="color:#ca7d37">while</span> pick == <span style="color:#0e9ce5">0</span></code><code> pick = <span style="color:#ca7d37">rand</span>;</code><code> end</code><code></code><code> <span style="color:#ca7d37">pos</span> = ceil(pick .* sum(lenchrom));</code><code> pick = <span style="color:#ca7d37">rand</span>;</code><code> v1 = chrom(<span style="color:#ca7d37">index</span>(<span style="color:#0e9ce5">1</span>), <span style="color:#ca7d37">pos</span>);</code><code> v2 = chrom(<span style="color:#ca7d37">index</span>(<span style="color:#0e9ce5">2</span>), <span style="color:#ca7d37">pos</span>);</code><code> chrom(<span style="color:#ca7d37">index</span>(<span style="color:#0e9ce5">1</span>), <span style="color:#ca7d37">pos</span>) = pick * v2 + (<span style="color:#0e9ce5">1</span> - pick) * v1;</code><code> chrom(<span style="color:#ca7d37">index</span>(<span style="color:#0e9ce5">2</span>), <span style="color:#ca7d37">pos</span>) = pick * v1 + (<span style="color:#0e9ce5">1</span> - pick) * v2;</code><code> flag1 = test(lenchrom, bound, chrom(<span style="color:#ca7d37">index</span>(<span style="color:#0e9ce5">1</span>), :));</code><code> flag2 = test(lenchrom, bound, chrom(<span style="color:#ca7d37">index</span>(<span style="color:#0e9ce5">2</span>), :));</code><code></code><code> <span style="color:#ca7d37">if</span> flag1 * flag2 == <span style="color:#0e9ce5">0</span></code><code> flag = <span style="color:#0e9ce5">0</span>;</code><code> <span style="color:#ca7d37">else</span></code><code> flag = <span style="color:#0e9ce5">1</span>;</code><code> end</code><code></code><code> end</code><code></code><code> end</code><code></code><code> ret = chrom;</code><code>end</code><code></code></span></span>
3 运行结果
4 参考文献
[1]王祺, 王小鹏, 王博辉. 基于优化变分模态分解算法的回波信号去噪[J]. 激光与光电子学进展, 2021, 58(20):2007001.
[2]边杰. "基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断." 推进技术 38.7(2017):7.
[3]楚剑雄. 基于变分模态分解能量熵和支持向量机的电力变压器绕组故障诊断. Diss. 西安理工大学, 2019.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。