1 简介
BP神经网络算法使用非常广泛,传统的BP神经网络算法虽然具有不错的拟合非线性函数的能力,但是容易陷入局部的极小值,并且传统的算法收敛的速度慢.本篇文章详细地论述了如何使用ent混沌映射原子搜索算法算法优化传统的BP神经网络算法中初始的权值和阀值,通过相应的验证和比较提出了该模型的有效性.
作为物理-元启发式算法中的一种,ASO 最早在 2018 年由赵卫国提出并将其应用于地下水分散系数估计。ASO 的灵感来自于基本的分子动力学,自然界中所有的物质都是由原子组成,原子具备质量和体积,在一个原子系统中,所有原子都是相互作用并且处于恒定的运动状态,其微观相互作用十分复杂。随着科学技术的发展,近些年来分子动力学发展迅速,已经可以使用计算机模拟原子和分子的物理运动规律。


正在上传…重新上传取消

正在上传…重新上传取消

2 部分代码
%--------------------------------------------------------------------------% GSA code v1.0.% Developed in MATLAB R2011b% The code is based on the following papers.% W. Zhao, L. Wang and Z. Zhang, Atom search optimization and its% application to solve a hydrogeologic parameter estimation problem,% Knowledge-Based Systems (2018), https://doi.org/10.1016/j.knosys.2018.08.030.%% W. Zhao, L. Wang and Z. Zhang, A novel atom search optimization for% dispersion coefficient estimation in groundwater, Future Generation% Computer Systems (2018), https://doi.org/10.1016/j.future.2018.05.037.%--------------------------------------------------------------------------% Atom Search Optimization.function [X_Best,Fit_XBest,Functon_Best]=ASO(alpha,beta,Fun_Index,Atom_Num,Max_Iteration)% Dim: Dimension of search space.% Atom_Pop: Population (position) of atoms.% Atom_V: Velocity of atoms.% Acc: Acceleration of atoms.% M: Mass of atoms.% Atom_Num: Number of atom population.% Fitness: Fitness of atoms.% Max_Iteration: Maximum of iterations.% X_Best: Best solution (position) found so far.% Fit_XBest: Best result corresponding to X_Best.% Functon_Best: The fitness over iterations.% Low: The low bound of search space.% Up: The up bound of search space.% alpha: Depth weight.% beta: Multiplier weightalpha=50;beta=0.2;Iteration=1;[Low,Up,Dim]=Test_Functions_Range(Fun_Index);% Randomly initialize positions and velocities of atoms.if size(Up,2)==1Atom_Pop=rand(Atom_Num,Dim).*(Up-Low)+Low;Atom_V=rand(Atom_Num,Dim).*(Up-Low)+Low;endif size(Up,2)>1for i=1:DimAtom_Pop(:,i)=rand(Atom_Num,1).*(Up(i)-Low(i))+Low(i);Atom_V(:,i)=rand(Atom_Num,1).*(Up(i)-Low(i))+Low(i);endend% Compute function fitness of atoms.for i=1:Atom_NumFitness(i)=Test_Functions(Atom_Pop(i,:),Fun_Index,Dim);endFuncton_Best=zeros(Max_Iteration,1);[Max_Fitness,Index]=min(Fitness);Functon_Best(1)=Fitness(Index);X_Best=Atom_Pop(Index,:);% Calculate acceleration.Atom_Acc=Acceleration(Atom_Pop,Fitness,Iteration,Max_Iteration,Dim,Atom_Num,X_Best,alpha,beta);% Iterationfor Iteration=2:Max_IterationFuncton_Best(Iteration)=Functon_Best(Iteration-1);Atom_V=rand(Atom_Num,Dim).*Atom_V+Atom_Acc;Atom_Pop=Atom_Pop+Atom_V;for i=1:Atom_Num% Relocate atom out of range.TU= Atom_Pop(i,:)>Up;TL= Atom_Pop(i,:)<Low;Atom_Pop(i,:)=(Atom_Pop(i,:).*(~(TU+TL)))+((rand(1,Dim).*(Up-Low)+Low).*(TU+TL));%evaluate atom.Fitness(i)=Test_Functions(Atom_Pop(i,:),Fun_Index,Dim);end[Max_Fitness,Index]=min(Fitness);if Max_Fitness<Functon_Best(Iteration)Functon_Best(Iteration)=Max_Fitness;X_Best=Atom_Pop(Index,:);elser=fix(rand*Atom_Num)+1;Atom_Pop(r,:)=X_Best;end% Calculate acceleration.Atom_Acc=Acceleration(Atom_Pop,Fitness,Iteration,Max_Iteration,Dim,Atom_Num,X_Best,alpha,beta);endFit_XBest=Functon_Best(Iteration);
3 仿真结果


4 参考文献
[1]马俊涛. 基于MATLAB的BP神经网络模型的预测算法研究[C]// 军事信息软件与仿真学术研讨会. 中国电子学会, 2006.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文探讨了如何使用混沌映射原子搜索算法(ASO)改进传统BP神经网络的初始化权重和阈值,以解决其陷入局部最小值和收敛速度慢的问题。ASO算法受到分子动力学的启发,模拟原子系统的相互作用和运动状态。通过MATLAB实现的代码展示了ASO如何应用于神经网络优化,并提供了仿真实验结果来验证其有效性。
1143

被折叠的 条评论
为什么被折叠?



