1 简介
为了提高核极限学习机(ELM)的分类正确率,采用灰狼算法(GWO)对惩罚系数,宽度参数两个参数进行优化.首先,根据乳腺良恶性肿瘤数据库训练集并利用灰狼算法优化核极限学习机;然后,通过GWO-ELM和ELM对测试集进行分类诊断;最后,对比分析GWO-ELM和ELM的分类性能,测试结果表明,GWO-ELM的总体诊断正确率相较于ELM提高了10%,且恶性肿瘤的诊断正确率明显优于ELM.
2 部分代码
% Grey Wolf Optimizerfunction [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fhandle,fnonlin)% initialize alpha, beta, and delta_posAlpha_pos=zeros(1,dim);Alpha_score=inf; %change this to -inf for maximization problemsBeta_pos=zeros(1,dim);Beta_score=inf; %change this to -inf for maximization problemsDelta_pos=zeros(1,dim);Delta_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,ub,lb);Convergence_curve=zeros(1,Max_iter);l=0;% Loop counter% Main loopwhile l<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;%% Calculate objective function for each search agentfitness=Fun(fhandle,fnonlin,Positions(i,:));%% Update Alpha, Beta, and Deltaif fitness<Alpha_scoreAlpha_score=fitness; % Update alphaAlpha_pos=Positions(i,:);endif fitness>Alpha_score && fitness<Beta_scoreBeta_score=fitness; % Update betaBeta_pos=Positions(i,:);endif fitness>Alpha_score && fitness>Beta_score && fitness<Delta_scoreDelta_score=fitness; % Update deltaDelta_pos=Positions(i,:);endenda=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0% Update the Position of search agents including omegasfor i=1:size(Positions,1)for j=1:size(Positions,2)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A1=2*a*r1-a; % Equation (3.3)C1=2*r2; % Equation (3.4)D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1r1=rand();r2=rand();A2=2*a*r1-a; % Equation (3.3)C2=2*r2; % Equation (3.4)D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2r1=rand();r2=rand();A3=2*a*r1-a; % Equation (3.3)C3=2*r2; % Equation (3.4)D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)endendl=l+1;Convergence_curve(l)=Alpha_score;end
3 仿真结果


4 参考文献
[1]赵国栋, 高旭, 张烜,等. 一种基于GWO-OSELM的非接触式手掌活体检测方法及装置:, CN112257688A[P]. 2021.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文介绍了一种通过灰狼优化算法(GWO)改进核极限学习机(ELM)在乳腺良恶性肿瘤分类中的应用。实验结果显示,GWO-ELM相较于传统ELM提高了10%的整体诊断正确率,并显著提升了恶性肿瘤的识别效果。作者分享了基于GWO的参数优化过程和仿真结果,以及相关代码实现。
170

被折叠的 条评论
为什么被折叠?



