【ElM分类】基于鲸鱼算法优化ElM神经网络实现数据分类附matlab代码

1 简介

针对ELM预测性能受其初始权值和阈值的影响,运用WOA算法对ELM的初始权值和阈值进行优化选择,优化​数据分类效果。

2 部分代码

%_________________________________________________________________________%% 鲸鱼优化算法             %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader Leader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iter    for i=1:size(Positions,1)                % Return back the search agents that go beyond the boundaries of the search space        Flag4ub=Positions(i,:)>ub;        Flag4lb=Positions(i,:)<lb;        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                % Calculate objective function for each search agent        fitness=fobj(Positions(i,:));                % Update the leader        if fitness<Leader_score % Change this to > for maximization problem            Leader_score=fitness; % Update alpha            Leader_pos=Positions(i,:);        end            end        a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)        % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)    a2=-1+t*((-1)/Max_iter);        % Update the Position of search agents     for i=1:size(Positions,1)        r1=rand(); % r1 is a random number in [0,1]        r2=rand(); % r2 is a random number in [0,1]                A=2*a*r1-a;  % Eq. (2.3) in the paper        C=2*r2;      % Eq. (2.4) in the paper                        b=1;               %  parameters in Eq. (2.5)        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)                p = rand();        % p in Eq. (2.6)                for j=1:size(Positions,2)                        if p<0.5                   if abs(A)>=1                    rand_leader_index = floor(SearchAgents_no*rand()+1);                    X_rand = Positions(rand_leader_index, :);                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)                                    elseif abs(A)<1                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)                end                            elseif p>=0.5                              distance2Leader=abs(Leader_pos(j)-Positions(i,j));                % Eq. (2.5)                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);                            end                    end    end    t=t+1;    Convergence_curve(t)=Leader_score;end

3 仿真结果

4 参考文献

[1]林绪骞. 基于鲸鱼算法优化ELM的新疆铁路网规模预测[J]. 现代科学仪器, 2019(2):5.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值