23.3 How exceptions are handled

本文详细介绍了C#中异常处理的基本原理与流程。当异常发生时,系统会寻找最近的catch子句进行处理,从当前方法开始逐级向上查找。若找到匹配的catch子句,则转移控制权并执行相应代码。此外,还探讨了特殊情况下异常处理的行为。
Exceptions are handled by a try statement (§15.10).
When an exception occurs, the system searches for the nearest catch clause
that can handle the exception,
as determined by the run-time type of the exception. First, the current
method is searched for a lexically
enclosing try statement, and the associated catch clauses of the try
statement are considered in order. If
that fails, the method that called the current method is searched for a
lexically enclosing try statement that
encloses the point of the call to the current method. This search continues
until a catch clause is found that
can handle the current exception, by naming an exception class that is of
the same class, or a base class, of
C# LANGUAGE SPECIFICATION
304
the run-time type of the exception being thrown. A catch clause that
doesn?t name an exception class can
handle any exception.
Once a matching catch clause is found, the system prepares to transfer
control to the first statement of the
catch clause. Before execution of the catch clause begins, the system first
executes, in order any
finally clauses that were associated with try statements more nested that
than the one that caught the
exception.
If no matching catch clause is found, one of two things occurs:
? If the search for a matching catch clause reaches a static constructor (§1
7.11) or static field initializer,
then a System.TypeInitializationException is thrown at the point that
triggered the invocation
of the static constructor. The inner exception of the
System.TypeInitializationException
contains the exception that was originally thrown.
? If the search for matching catch clauses reaches the code that initially
started the thread, then execution
of the thread is terminated. The impact of such termination is
implementation-defined.
Exceptions that occur during destructor execution are worth special
mention. If an exception occurs during
destructor execution, and that exception is not caught, then the execution
of that destructor is terminated and
the destructor of the base class (if any) is called. If there is no base
class (as in the case of the object type)
or if there is no base class destructor, then the exception is discarded. 
 
MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值