tarjan模板(缩点,求有向图强连通分量)

本文提供了一个Tarjan算法的实现模板,用于求解图中的强连通分量。该模板包括了必要的数据结构定义、初始化函数、添加边函数及核心的深度优先搜索函数,并附有详细的注释说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

想看更多模板,请点击:http://blog.youkuaiyun.com/martinue/article/category/6268283

整理出了这个tarjan模板,具体数组的功能代码都有注释。

const int N=100010;
struct data
{
    int to,next;
} tu[N*2];
int head[N];
int ip;
int dfn[N], low[N];///dfn[]表示深搜的步数,low[u]表示u或u的子树能够追溯到的最早的栈中节点的次序号
int sccno[N];///缩点数组,表示某个点对应的缩点值
int step;
int scc_cnt;///强连通分量个数
void init()
{
    ip=0;
    memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
    tu[ip].to=v,tu[ip].next=head[u],head[u]=ip++;
}
vector<int> scc[N];///得出来的缩点,scc[i]里面存i这个缩点具体缩了哪些点
stack<int> S;
void dfs(int u)
{
    dfn[u] = low[u] = ++step;
    S.push(u);
    for (int i = head[u]; i !=-1; i=tu[i].next)
    {
        int v = tu[i].to;
        if (!dfn[v])
        {
            dfs(v);
            low[u] = min(low[u], low[v]);
        }
        else if (!sccno[v])
            low[u] = min(low[u], dfn[v]);
    }
    if (low[u] == dfn[u])
    {
        scc_cnt += 1;
        scc[scc_cnt].clear();
        while(1)
        {
            int x = S.top();
            S.pop();
            if (sccno[x] != scc_cnt) scc[scc_cnt].push_back(x);
            sccno[x] = scc_cnt;
            if (x == u) break;
        }
    }
}
void tarjan(int n)
{
    memset(sccno, 0, sizeof(sccno));
    memset(dfn, 0, sizeof(dfn));
    step = scc_cnt = 0;
    for (int i = 1; i <=n; i++)
        if (!dfn[i]) dfs(i);
}

具体思路见详解网址:https://www.byvoid.com/blog/scc-tarjan


### 强连通分量算法模板连通分量(Strongly Connected Component, SCC)是指在一个有向中,任意两个节都可以互相到达的最大子。通过 Tarjan 算法可以高效地找到这些强连通分量并将其成单个节,从而简化原结构。 以下是基于 Tarjan 算法的 C++ 实现代码模板: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; // 节数量上限 int n, m; vector<int> adj[MAXN]; // 邻接表存储 stack<int> stk; // 辅助栈 bool in_stack[MAXN]; // 判断当前节是否在栈中 int dfn[MAXN], low[MAXN]; // 时间戳数组和追溯值数组 int scc_id[MAXN]; // 存储每个节所属的强连通分量编号 int idx = 0, cnt_scc = 0; // 当前时间戳计数器 和 强连通分量计数器 void tarjan(int u) { dfn[u] = low[u] = ++idx; // 初始化dfn和low stk.push(u); // 将u压入栈 in_stack[u] = true; // 标记u已在栈中 for (auto &v : adj[u]) { // 枚举所有邻接 if (!dfn[v]) { // 如果v未访问过 tarjan(v); low[u] = min(low[u], low[v]); // 更新low[u] } else if (in_stack[v]) { // 如果v已经在栈中 low[u] = min(low[u], dfn[v]); } } if (dfn[u] == low[u]) { // 找到一个新的强连通分量 ++cnt_scc; // 新增一个SCC编号 while (true) { // 提取该SCC中的所有节 int v = stk.top(); stk.pop(); in_stack[v] = false; scc_id[v] = cnt_scc; // 记录属于哪个SCC if (v == u) break; // 当弹出的是u时结束循环 } } } // 主函数调用部分 void solve() { cin >> n >> m; // 输入节数和边数 for (int i = 1; i <= m; ++i) { int u, v; cin >> u >> v; // 输入一条有向边 adj[u].push_back(v); } memset(dfn, 0, sizeof(dfn)); // 初始化dfn数组 memset(in_stack, 0, sizeof(in_stack)); idx = cnt_scc = 0; for (int i = 1; i <= n; ++i) { // 对每个节运行tarjan if (!dfn[i]) tarjan(i); } cout << "Total Strongly Connected Components: " << cnt_scc << "\n"; } ``` #### 关键说明 上述代码实现了 Tarjan 算法的核心逻辑[^2]。 - `dfn` 数组记录了每个节第一次被访问的时间戳。 - `low` 数组用于追踪能够回溯到的最早祖先节的时间戳。 - 使用辅助栈来保存当前路径上的节,并判断哪些节已经形成一个完整的强连通分量。 - 每次当发现某个节满足条件 `dfn[u] == low[u]` 时,表示找到了一个新的强连通分量[^3]。 完成 Tarjan 算法后,可以通过构建新的后的来进行进一步处理。具体做法如下: - 创建新,其中每个节代表原始的一个强连通分量。 - 统计每条边连接的不同强连通分量之间的关系,忽略内部重复边。 --- ### 后的应用实例 假设我们需要计算拓扑序或者解决某些动态规划问题,在之后的新上操作会更加简单有效。例如,对于 DAG 上的经典 DP 或最短路问题,可以直接在此基础上展开分析。 ```cpp vector<vector<int>> new_adj(cnt_scc + 1); // 后的新 long long indegree[cnt_scc + 1] = {}; // 入度统计 for (int u = 1; u <= n; ++u) { for (auto &v : adj[u]) { if (scc_id[u] != scc_id[v]) { // 只考虑跨不同SCC的边 new_adj[scc_id[u]].push_back(scc_id[v]); indegree[scc_id[v]]++; } } } ``` 此段代码展示了如何根据原有生成后的结构[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值