题意:写一个二叉搜索树的迭代器。
思路:中序遍历。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class BSTIterator {
public:
BSTIterator(TreeNode *root) {
dfs(root);
n = 0;
}
/** @return whether we have a next smallest number */
bool hasNext() {
return n < re.size();
}
/** @return the next smallest number */
int next() {
return re[n ++];
}
vector<int> re;
int n;
void dfs(TreeNode* root) {
if(root == NULL) return;
dfs(root->left);
re.push_back(root->val);
dfs(root->right);
return;
}
};
/**
* Your BSTIterator will be called like this:
* BSTIterator i = BSTIterator(root);
* while (i.hasNext()) cout << i.next();
*/
这样的方法虽然实现了O(1)的时间复杂度,但是没有达到O(h)的空间复杂度。可以用堆栈实现O(h)的空间复杂度,但时间复杂度变为O(h)。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class BSTIterator {
public:
BSTIterator(TreeNode *root) {
dfs(root);
}
/** @return whether we have a next smallest number */
bool hasNext() {
return !mys.empty();
}
/** @return the next smallest number */
int next() {
TreeNode* temp = mys.top();
mys.pop();
dfs(temp->right);
return temp->val;
}
stack<TreeNode*> mys;
void dfs(TreeNode* root) {
while(root) {
mys.push(root);
root = root->left;
}
return;
}
};
/**
* Your BSTIterator will be called like this:
* BSTIterator i = BSTIterator(root);
* while (i.hasNext()) cout << i.next();
*/