Minimum Path Sum (M)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
题意
在矩形中找到一条路径,起点为左上顶点,终点为右下顶点,路径中只能向右或向下走,要求计算不同路径上数字之和的最小值。
思路
与 62. Unique Paths 和 63. Unique Paths Ⅱ 方法一致,但dp数组的含义不同:dp[i][j]表示到达(i, j)的多条路径中的最小数字和。
代码实现 - 动态规划
class Solution {
public int minPathSum(int[][] grid) {
int n = grid.length, m = grid[0].length;
int dp[][] = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
// 第一行和第一列单独处理
if (i == 0) {
dp[i][j] = j == 0 ? grid[0][0] :grid[i][j] +dp[i][j - 1];
} else if (j == 0) {
dp[i][j] = grid[i][j] + dp[i - 1][j];
} else {
dp[i][j] = Math.min(grid[i][j] + dp[i][j - 1], grid[i][j] + dp[i - 1][j]);
}
}
}
return dp[n-1][m - 1];
}
}
代码实现 - 滚动数组优化
class Solution {
public int minPathSum(int[][] grid) {
int n = grid.length, m = grid[0].length;
int dp[] = new int[m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
// 第一行和第一列单独处理
if (i == 0) {
dp[j] = j == 0 ? grid[0][0] : grid[i][j] + dp[j - 1];
} else if (j == 0) {
dp[j] = grid[i][j] + dp[j];
} else {
dp[j] = Math.min(grid[i][j] + dp[j - 1], grid[i][j] + dp[j]);
}
}
}
return dp[m - 1];
}
}
本文详细解析了在矩阵中寻找从左上角到右下角的最小路径和问题,通过动态规划方法解决,并提供了两种代码实现方案:标准动态规划和滚动数组优化。适合对算法优化和动态规划感兴趣的读者。
309

被折叠的 条评论
为什么被折叠?



