Fourier变换与逆变换
Fourier变换(纯数学形式):
F[f(t)]=∫−∞∞f(t)e−iωtdtF\left[ f\left( t \right) \right]=\int_{-\infty }^{\infty }{f\left( t \right)}{{e}^{-i\omega t}}dtF[f(t)]=∫−∞∞f(t)e−iωtdt
Fourier逆变换(纯数学形式):
f(t)=12π∫−∞∞F(ω)eiωtdωf\left( t \right)=\frac{1}{2\pi }\int_{-\infty }^{\infty }{F\left( \omega \right)}{{e}^{i\omega t}}d\omegaf(t)=2π1∫−∞∞F(ω)eiωtdω
Fourier余弦变换与逆变换
Fourier余弦变换(纯数学形式):
F[f(t)]=∫−∞∞f(t)e−iωtdt=2∫0∞f(t)cos(ωt)dtF\left[ f\left( t \right) \right]=\int_{-\infty }^{\infty }{f\left( t \right)}{{e}^{-i\omega t}}dt=2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dtF[f(t)]=∫−∞∞f(t)e−iωtdt=2∫0∞f(t)cos(ωt)dt
令Fc[f(t)]=2∫0∞f(t)cos(ωt)dt{{F}_{c}}\left[ f\left( t \right) \right]=2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dtFc[f(t)]=2∫0∞f(t)cos(ωt)dt
Fourier余弦逆变换(纯数学形式):
f(t)=12π∫−∞∞F(ω)eiωtdω =12π∫−∞∞(2∫0∞f(t)cos(ωt)dt)eiωtdω =12π∫−∞∞(2∫0∞f(t)cos(ωt)dt)cos(ωt)dω =1π∫0∞(2∫0∞f(t)cos(ωt)dt)cos(ωt)dω =1π∫0∞Fc(ω)cos(ωt)dω\begin{align} & f\left( t \right)=\frac{1}{2\pi }\int_{-\infty }^{\infty }{F\left( \omega \right)}{{e}^{i\omega t}}d\omega \\ & \text{ }=\frac{1}{2\pi }\int_{-\infty }^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dt \right){{e}^{i\omega t}}d\omega } \\ & \text{ }=\frac{1}{2\pi }\int_{-\infty }^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dt \right)\cos \left( \omega t \right)d\omega } \\ & \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dt \right)\cos \left( \omega t \right)d\omega } \\ & \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{{{F}_{c}}\left( \omega \right)}\cos \left( \omega t \right)d\omega \\ \end{align}f(t)=2π1∫−∞∞F(ω)eiωtdω =2π1∫−∞∞(2∫0∞f(t)cos(ωt)dt)eiωtdω =2π1∫−∞∞(2∫0∞f(t)cos(ωt)dt)cos(ωt)dω =π1∫0∞(2∫0∞f(t)cos(ωt)dt)cos(ωt)dω =π1∫0∞Fc(ω)cos(ωt)dω
Fourier正弦变换与逆变换
Fourier正弦变换(纯数学形式):
F[f(t)]=∫−∞∞f(t)e−iωtdt=−2i∫0∞f(t)sin(ωt)dtF\left[ f\left( t \right) \right]=\int_{-\infty }^{\infty }{f\left( t \right)}{{e}^{-i\omega t}}dt=-2i\int_{0}^{\infty }{f\left( t \right)}\sin \left( \omega t \right)dtF[f(t)]=∫−∞∞f(t)e−iωtdt=−2i∫0∞f(t)sin(ωt)dt
令Fs[f(t)]=2∫0∞f(t)sin(ωt)dt{{F}_{s}}\left[ f\left( t \right) \right]=2\int_{0}^{\infty }{f\left( t \right)}\sin \left( \omega t \right)dtFs[f(t)]=2∫0∞f(t)sin(ωt)dt
Fourier正弦逆变换(纯数学形式):
f(t)=12π∫−∞∞F(ω)eiωtdω =12π∫−∞∞(−2i∫0∞f(t)sin(ωt)dt)eiωtdω =12πi∫−∞∞(−2i∫0∞f(t)sin(ωt)dt)sin(ωt)dω =1π∫0∞(2∫0∞f(t)sin(ωt)dt)cos(ωt)dω =1π∫0∞Fs(ω)sin(ωt)dω\begin{align}
& f\left( t \right)=\frac{1}{2\pi }\int_{-\infty }^{\infty }{F\left( \omega \right)}{{e}^{i\omega t}}d\omega \\
& \text{ }=\frac{1}{2\pi }\int_{-\infty }^{\infty }{\left( -2i\int_{0}^{\infty }{f\left( t \right)}\sin\left( \omega t \right)dt \right){{e}^{i\omega t}}d\omega } \\
& \text{ }=\frac{1}{2\pi }i\int_{-\infty }^{\infty }{\left( -2i\int_{0}^{\infty }{f\left( t \right)}\sin\left( \omega t \right)dt \right)\sin \left( \omega t \right)d\omega } \\
& \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\sin\left( \omega t \right)dt \right)\cos \left( \omega t \right)d\omega } \\
& \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{{{F}_{s}}\left( \omega \right)}\sin\left( \omega t \right)d\omega \\
\end{align}f(t)=2π1∫−∞∞F(ω)eiωtdω =2π1∫−∞∞(−2i∫0∞f(t)sin(ωt)dt)eiωtdω =2π1i∫−∞∞(−2i∫0∞f(t)sin(ωt)dt)sin(ωt)dω =π1∫0∞(2∫0∞f(t)sin(ωt)dt)cos(ωt)dω =π1∫0∞Fs(ω)sin(ωt)dω
若f(t)f(t)f(t)是偶函数,则
Fc[f(t)]=F[f(t)]{{F}_{c}}\left[ f\left( t \right) \right]=F\left[ f\left( t \right) \right]Fc[f(t)]=F[f(t)]
若f(t)f(t)f(t)是奇函数,则
Fs[f(t)]=iF[f(t)]{{F}_{s}}\left[ f\left( t \right) \right]=iF\left[ f\left( t \right) \right]Fs[f(t)]=iF[f(t)]