Fourier变换、Fourier余弦变换和Fourier正弦变换

文章详细介绍了Fourier变换的数学表达式,包括其逆变换,以及Fourier余弦变换和正弦变换的定义和逆变换公式。这些概念在信号处理和数学分析中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fourier变换与逆变换

Fourier变换(纯数学形式):

F[f(t)]=∫−∞∞f(t)e−iωtdtF\left[ f\left( t \right) \right]=\int_{-\infty }^{\infty }{f\left( t \right)}{{e}^{-i\omega t}}dtF[f(t)]=f(t)etdt

Fourier逆变换(纯数学形式):

f(t)=12π∫−∞∞F(ω)eiωtdωf\left( t \right)=\frac{1}{2\pi }\int_{-\infty }^{\infty }{F\left( \omega \right)}{{e}^{i\omega t}}d\omegaf(t)=2π1F(ω)etdω

Fourier余弦变换与逆变换

Fourier余弦变换(纯数学形式):

F[f(t)]=∫−∞∞f(t)e−iωtdt=2∫0∞f(t)cos⁡(ωt)dtF\left[ f\left( t \right) \right]=\int_{-\infty }^{\infty }{f\left( t \right)}{{e}^{-i\omega t}}dt=2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dtF[f(t)]=f(t)etdt=20f(t)cos(ωt)dt
Fc[f(t)]=2∫0∞f(t)cos⁡(ωt)dt{{F}_{c}}\left[ f\left( t \right) \right]=2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dtFc[f(t)]=20f(t)cos(ωt)dt

Fourier余弦逆变换(纯数学形式):

f(t)=12π∫−∞∞F(ω)eiωtdω =12π∫−∞∞(2∫0∞f(t)cos⁡(ωt)dt)eiωtdω =12π∫−∞∞(2∫0∞f(t)cos⁡(ωt)dt)cos⁡(ωt)dω =1π∫0∞(2∫0∞f(t)cos⁡(ωt)dt)cos⁡(ωt)dω =1π∫0∞Fc(ω)cos⁡(ωt)dω\begin{align} & f\left( t \right)=\frac{1}{2\pi }\int_{-\infty }^{\infty }{F\left( \omega \right)}{{e}^{i\omega t}}d\omega \\ & \text{ }=\frac{1}{2\pi }\int_{-\infty }^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dt \right){{e}^{i\omega t}}d\omega } \\ & \text{ }=\frac{1}{2\pi }\int_{-\infty }^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dt \right)\cos \left( \omega t \right)d\omega } \\ & \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\cos \left( \omega t \right)dt \right)\cos \left( \omega t \right)d\omega } \\ & \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{{{F}_{c}}\left( \omega \right)}\cos \left( \omega t \right)d\omega \\ \end{align}f(t)=2π1F(ω)etdω =2π1(20f(t)cos(ωt)dt)etdω =2π1(20f(t)cos(ωt)dt)cos(ωt)dω =π10(20f(t)cos(ωt)dt)cos(ωt)dω =π10Fc(ω)cos(ωt)dω

Fourier正弦变换与逆变换

Fourier正弦变换(纯数学形式):

F[f(t)]=∫−∞∞f(t)e−iωtdt=−2i∫0∞f(t)sin⁡(ωt)dtF\left[ f\left( t \right) \right]=\int_{-\infty }^{\infty }{f\left( t \right)}{{e}^{-i\omega t}}dt=-2i\int_{0}^{\infty }{f\left( t \right)}\sin \left( \omega t \right)dtF[f(t)]=f(t)etdt=2i0f(t)sin(ωt)dt
Fs[f(t)]=2∫0∞f(t)sin⁡(ωt)dt{{F}_{s}}\left[ f\left( t \right) \right]=2\int_{0}^{\infty }{f\left( t \right)}\sin \left( \omega t \right)dtFs[f(t)]=20f(t)sin(ωt)dt

Fourier正弦逆变换(纯数学形式):

f(t)=12π∫−∞∞F(ω)eiωtdω =12π∫−∞∞(−2i∫0∞f(t)sin⁡(ωt)dt)eiωtdω =12πi∫−∞∞(−2i∫0∞f(t)sin⁡(ωt)dt)sin⁡(ωt)dω =1π∫0∞(2∫0∞f(t)sin⁡(ωt)dt)cos⁡(ωt)dω =1π∫0∞Fs(ω)sin⁡(ωt)dω\begin{align} & f\left( t \right)=\frac{1}{2\pi }\int_{-\infty }^{\infty }{F\left( \omega \right)}{{e}^{i\omega t}}d\omega \\ & \text{ }=\frac{1}{2\pi }\int_{-\infty }^{\infty }{\left( -2i\int_{0}^{\infty }{f\left( t \right)}\sin\left( \omega t \right)dt \right){{e}^{i\omega t}}d\omega } \\ & \text{ }=\frac{1}{2\pi }i\int_{-\infty }^{\infty }{\left( -2i\int_{0}^{\infty }{f\left( t \right)}\sin\left( \omega t \right)dt \right)\sin \left( \omega t \right)d\omega } \\ & \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{\left( 2\int_{0}^{\infty }{f\left( t \right)}\sin\left( \omega t \right)dt \right)\cos \left( \omega t \right)d\omega } \\ & \text{ }=\frac{1}{\pi }\int_{0}^{\infty }{{{F}_{s}}\left( \omega \right)}\sin\left( \omega t \right)d\omega \\ \end{align}f(t)=2π1F(ω)etdω =2π1(2i0f(t)sin(ωt)dt)etdω =2π1i(2i0f(t)sin(ωt)dt)sin(ωt)dω =π10(20f(t)sin(ωt)dt)cos(ωt)dω =π10Fs(ω)sin(ωt)dω
f(t)f(t)f(t)是偶函数,则
Fc[f(t)]=F[f(t)]{{F}_{c}}\left[ f\left( t \right) \right]=F\left[ f\left( t \right) \right]Fc[f(t)]=F[f(t)]
f(t)f(t)f(t)是奇函数,则
Fs[f(t)]=iF[f(t)]{{F}_{s}}\left[ f\left( t \right) \right]=iF\left[ f\left( t \right) \right]Fs[f(t)]=iF[f(t)]

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值