内存管理模块管理系统的内存资源,它是操作系统的核心模块之一,主要包括内存的初始化、分配以及释放。
在系统运行过程中,内存管理模块通过对内存的申请/释放来管理用户和OS
对内存的使用,使内存的利用率和使用效率达到最优,同时最大限度地解决系统的内存碎片问题。
鸿蒙轻内核的内存管理分为静态内存管理和动态内存管理,提供内存初始化、分配、释放等功能。
-
动态内存:在动态内存池中分配用户指定大小的内存块。
- 优点:按需分配。
- 缺点:内存池中可能出现碎片。
-
静态内存:在静态内存池中分配用户初始化时预设(固定)大小的内存块。
- 优点:分配和释放效率高,静态内存池中无碎片。
- 缺点:只能申请到初始化预设大小的内存块,不能按需申请。
本文主要分析鸿蒙轻内核静态内存(Memory Box
),后续系列会继续分析动态内存。静态内存实质上是一个静态数组,静态内存池内的块大小在初始化时设定,初始化后块大小不可变更。静态内存池由一个控制块和若干相同大小的内存块构成。控制块位于内存池头部,用于内存块管理。内存块的申请和释放以块大小为粒度。
本文通过分析静态内存模块的源码,帮助读者掌握静态内存的使用。本文中所涉及的源码,以OpenHarmony LiteOS-M
内核为例,均可以在开源站点 https://gitee.com/openharmony/kernel_liteos_m 获取。
接下来,我们看下静态内存的结构体,静态内存初始化,静态内存常用操作的源代码。
1、静态内存结构体定义和常用宏定义
1.1 静态内存结构体定义
静态内存结构体在文件kernel\include\los_membox.h
中定义。源代码如下,⑴处定义的是静态内存节点LOS_MEMBOX_NODE
结构体,⑵处定义的静态内存的结构体池信息结构体为LOS_MEMBOX_INFO
,,结构体成员的解释见注释部分。
⑴ typedef struct tagMEMBOX_NODE {
struct tagMEMBOX_NODE *pstNext; /**< 静态内存池中空闲节点指针,指向下一个空闲节点 */
} LOS_MEMBOX_NODE;
⑵ typedef struct LOS_MEMBOX_INFO {
UINT32 uwBlkSize; /**< 静态内存池中空闲节点指针,指向下一个空闲节点 */
UINT32 uwBlkNum; /**< 静态内存池的内存块总数量 */
UINT32 uwBlkCnt; /**< 静态内存池的已分配的内存块总数量 */
#if (LOSCFG_PLATFORM_EXC == 1)
struct LOS_MEMBOX_INFO *nextMemBox; /**< 指向下一个静态内存池 */
#endif
LOS_MEMBOX_NODE stFreeList; /**< 静态内存池的空闲内存块单向链表 */
} LOS_MEMBOX_INFO;
对静态内存使用如下示意图进行说明,对一块静态内存区域,头部是LOS_MEMBOX_INFO
信息,接着是各个内存块,每块内存块大小是uwBlkSize
,包含内存块节点LOS_MEMBOX_NODE
和内存块数据区。空闲内存块节点指向下一块空闲内存块节点。
1.2 静态内存常用宏定义
静态内存头文件中还提供了一些重要的宏定义。⑴处的LOS_MEMBOX_ALIGNED(memAddr)
用于对齐内存地址,⑵处OS_MEMBOX_NEXT(addr, blkSize)
根据当前节点内存地址addr
和内存块大小blkSize
获取下一个内存块的内存地址。⑶处OS_MEMBOX_NODE_HEAD_SIZE
表示内存块中节点头大小,每个内存块包含内存节点LOS_MEMBOX_NODE
和存放业务的数据区。⑷处表示静态内存的总大小,包含内存池信息结构体占用的大小,和各个内存块占用的大小。
⑴ #defi