带你玩转OpenHarmony AI-基于海思NNIE的AI能力自定义

简介

相信大家从玩转OpenAtom OpenHarmony(简称“OpenHarmony”)AI系列专题的其他文章中,已经拓展了OpenHarmony AI在智慧出行、智慧办公等多场景下的AI自动检测、识别和判断的新体验,对于OpenHarmony平台上的AI开发有了一定认识。

如果你已经有了一个AI创意,怎样训练出相关模型?怎样在你的OpenHarmony设备上部署你的AI模型?接下来以OpenHarmony Hi3516dv300小型系统为例,带领大家使用Hi3516dv300 NNIE硬件单元完成手势检测与分类功能。

NNIE是Neural Network Inference Engine的简称,是上海海思媒体SoC中专门针对神经网络特别是深度学习卷积神经网络进行加速处理的硬件单元,支持现有大部分的公开网络,如相关分类网络、检测网络、分割网络等。(详细资料见文末参考链接:《Hi3516dv300平台NNIE开发指南文档》)

开发流程

下面以手势分类这一需求为例,梳理一下相关AI需求在Hi3516dv300开发板端落地的开发步骤:

1) 数据采集:针对设想的手势场景,录制相关场景素材。其中必须考虑到样本的丰富性和可靠性;

2) 数据集制作和标注:对步骤1中的素材抽取生成数据集,同时还必须对数据集进行相应数据清洗和数据标注动作;

3) 算法模型设计:你可以参考相关开源算法模型,并针对于应用场景做相应修改。相关模型选择请参考《Hi3516dv300平台NNIE开发指南文档》3.3公开模型下载章节;本实例中,需要完成手势的检测和分类,其中对于手势检测选用了Yol

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值