为何单独讲调度队列?
鸿蒙内核代码中有两个源文件是关于队列的,一个是用于调度的队列,另一个是用于线程间通讯的IPC队列。
IPC队列后续有专门的博文讲述,这两个队列的数据结构实现采用的都是双向循环链表,再说一遍LOS_DL_LIST实在是太重要了,是理解鸿蒙内核的关键,说是最重要的代码一点也不为过,源码出现在 sched_sq模块,说明是用于任务的调度的,sched_sq模块只有两个文件,另一个los_sched.c就是调度代码。
涉及函数
鸿蒙内核进程和线程各有32个就绪队列,进程队列用全局变量存放, 创建进程时入队, 任务队列放在进程的threadPriQueueList中。
映射张大爷的故事:就绪队列就是在外面排队的32个通道,按优先级0-31依次排好,张大爷的办公室有个牌子,类似打篮球的记分牌,一共32个,一字排开,队列里有人时对应的牌就是1,没有就是0 ,这样张大爷每次从0位开始看,看到的第一个1那就是最高优先级的那个人。办公室里的记分牌就是位图调度器。
位图调度器
//* 0x80000000U = 10000000000000000000000000000000(32位,1是用于移位的,设计之精妙,点赞)
#define PRIQUEUE_PRIOR0_BIT 0x80000000U
LITE_OS_SEC_BSS LOS_DL_LIST *g_priQueueList = NULL; //所有的队列 原始指针
LITE_OS_SEC_BSS UINT32 g_priQueueBitmap; // 位图调度
整个los_priqueue.c就只有两个全部变量,一个是 LOS_DL_LIST *g_priQueueList 是32个进程就绪队列的头指针,在就绪队列中会讲另一个UINT32 g_priQueueBitmap 估计很多人会陌生,是一个32位的变量,叫位图调度器。怎么理解它呢?
鸿蒙系统的调度是抢占式的,task分成32个优先级,如何快速的知道哪个队列是空的,哪个队列里有任务需要一个标识,而且要极高效的实现?答案是:位图调度器。
系列篇已有专门讲位图管理的文章,自行翻看.简单说就是一个变量的位来标记对应队列中是否有任务,在位图调度下,任务优先级的值越小则代表具有越高的优先级,每当需要进行调度时,从最低位向最高位查找出第一个置 1 的位的所在位置,即为当前最高优先级,然后从对应优先级就绪队列获得相应的任务控制块,整个调度器的实现复杂度是 O(1),即无论任务多少,其调度时间是固定的。
进程就绪队列机制
CPU执行速度是很快的,其运算速度和内存的读写速度是数量级的差异,与硬盘的读写更是指数级。 鸿蒙内核默认一个时间片是 10ms, 资源很宝贵,它不断在众多任务中来回的切换,所以绝不能让CPU等待任务,CPU时间很宝贵,没准备好的任务不要放进来。这就是进程和线程就绪队列的机制,一共有32个任务就绪队列,因为线程的优先级是默认32个, 每个队列中放同等优先级的task. 队列初始化做了哪些工作?详细看代码
#define OS_PRIORITY_QUEUE_NUM 32
//内部队列初始化
UINT32 OsPriQueueInit(VOID)
{
UINT32 priority;
/* system resident resource *///常驻内存
g_priQueueList = (LOS_DL_LIST *)LOS_MemAlloc(m_aucSysMem0, (OS_PRIORITY_QUEUE_NUM * sizeof(LOS_DL_LIST)));//分配32个队列头节点
if (g_priQueueList == NULL) {
return LOS_NOK;
}
for (priority = 0; priority < OS_PRIORITY_QUEUE_NUM; ++priority) {
LOS_ListInit(&g_priQueueList[priority]);//队列初始化,前后指针指向自己
}
return LOS_OK;
}
因TASK 有32个优先级,在初始化时内核一次性创建了32