Docker安装分布式vLLM

Docker安装分布式vLLM

1 介绍

vLLM是一个快速且易于使用的LLM推理和服务库,适合用于生产环境。单主机部署会遇到显存不足的问题,因此需要分布式部署。

分布式安装方法

https://docs.vllm.ai/en/latest/serving/distributed_serving.html

2 安装方法

⚠️ 注意:前期一定要把docker环境、运行时和GPU安装好。

CUDA Version: 12.4

vllm:v0.7.2

2.1 下载镜像

# 下载镜像,镜像比较大
docker pull vllm/vllm-openai:v0.7.2

下载分布式部署的脚本

https://github.com/vllm-project/vllm/blob/main/examples/online_serving/run_cluster.sh

run_cluster.sh文件

#!/bin/bash

# Check for minimum number of required arguments
if [ $# -lt 4 ]; then
    echo "Usage: $0 docker_image head_node_address --head|--worker path_to_hf_home [additional_args...]"
    exit 1
fi

# Assign the first three arguments and shift them away
DOCKER_IMAGE="$1"
HEAD_NODE_ADDRESS="$2"
NODE_TYPE="$3"  # Should be --head or --worker
PATH_TO_HF_HOME="$4"
shift 4

# Additional arguments are passed directly to the Docker command
ADDITIONAL_ARGS=("$@")

# Validate node type
if [ "${NODE_TYPE}" != "--head" ] && [ "${NODE_TYPE}" != "--worker" ]; then
    echo "Error: Node type must be --head or --worker"
    exit 1
fi

# Define a function to cleanup on EXIT signal
cleanup() {
    docker stop node
    docker rm node
}
trap cleanup EXIT

# Command setup for head or worker node
RAY_START_CMD="ray start --block"
if [ "${NODE_TYPE}" == "--head" ]; then
    RAY_START_CMD+=" --head --port=6379"
else
    RAY_START_CMD+=" --address=${HEAD_NODE_ADDRESS}:6379"
fi

# Run the docker command with the user specified parameters and additional arguments
docker run \
    --entrypoint /bin/bash \
    --network host \
    --name node \
    --shm-size 10.24g \
    --gpus all \
    -v "${PATH_TO_HF_HOME}:/root/.cache/huggingface" \
    "${ADDITIONAL_ARGS[@]}" \
    "${DOCKER_IMAGE}" -c "${RAY_START_CMD}"

2.2 创建容器

两台主机的IP如下,主节点宿主机IP:192.168.108.100,工作节点宿主机IP:192.168.108.101。

主节点(head节点)运行分布式vLLM脚本

官网的说明

# ip_of_head_node:主节点容器所在宿主机的IP地址
# /path/to/the/huggingface/home/in/this/node: 映射到到容器中的路径
# ip_of_this_node:当前节点所在宿主机的IP地址
# --head:表示主节点
bash run_cluster.sh \
                vllm/vllm-openai \
                ip_of_head_node \
                --head \
                /path/to/the/huggingface/home/in/this/node \
                -e VLLM_HOST_IP=ip_of_this_node

本机执行

bash run_cluster.sh \
    vllm/vllm-openai:v0.7.2 \
    192.168.108.100 \
    --head \
    /home/vllm \
    -e VLLM_HOST_IP=192.168.108.100 \
    > nohup.log 2>&1 &

工作节点(worker节点)运行分布式vLLM脚本

官网的说明

# ip_of_head_node:主节点容器所在宿主机的IP地址
# /path/to/the/huggingface/home/in/this/node: 映射到到容器中的路径
# ip_of_this_node:当前节点所在宿主机的IP地址
# --worker:表示工作节点
bash run_cluster.sh \
                vllm/vllm-openai \
                ip_of_head_node \
                --worker \
                /path/to/the/huggingface/home/in/this/node \
                -e VLLM_HOST_IP=ip_of_this_node

本机执行

bash run_cluster.sh \
    vllm/vllm-openai:v0.7.2 \
    192.168.108.100 \
    --worker \
    /home/vllm \
    -e VLLM_HOST_IP192.168.108.101 \
    > nohup.log 2>&1 &

查看集群的信息

# 进入容器
docker exec -it node /bin/bash

# 查看集群信息
ray status
# 返回值中有GPU数量、CPU配置和内存大小等
======== Autoscaler status: 2025-02-13 20:18:13.886242 ========
Node status
---------------------------------------------------------------
Active:
 1 node_89c804d654976b3c606850c461e8dc5c6366de5e0ccdb360fcaa1b1c
 1 node_4b794efd101bc393da41f0a45bd72eeb3fb78e8e507d72b5fdfb4c1b
Pending:
 (no pending nodes)
Recent failures:
 (no failures)

Resources
---------------------------------------------------------------
Usage:
 0.0/128.0 CPU
 0.0/4.0 GPU
 0B/20 GiB memory
 0B/19.46GiB object_store_memory

Demands:
 (no resource demands)

3 安装模型

⚠️ 本地有4张GPU卡。

官网说明

# 启动模型服务,可根据情况设置模型参数
# /path/to/the/model/in/the/container:模型路径
# tensor-parallel-size:张量并行数量,模型层内拆分后并行计算;
# pipeline-parallel-size:管道并行数量,模型不同层拆分后并行计算,在单个显存不够时可以设置此参数
vllm serve /path/to/the/model/in/the/container \
     --tensor-parallel-size 8 \
     --pipeline-parallel-size 2

本机执行

将下载好的Qwen2.5-7B-Instruct模型,放在“/home/vllm”目录下

# 进入节点,主节点和工作节点都可以
docker exec -it node /bin/bash

# 执行命令参数
nohup vllm serve /root/.cache/huggingface/Qwen2.5-7B-Instruct \
    --served-model-name qwen2.5-7b \
    --tensor-parallel-size 2 \
    --pipeline-parallel-size 2 \
    > nohup.log 2>&1 &

在宿主机上调用参数

curl http://localhost:8000/v1/chat/completions \
-X POST \
-H "Content-Type: application/json" \
-d '{
    "model": "qwen2.5-7b",
    "messages": [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "介绍一下中国,不少于10000字"}
    ],
    "stream": true
}'
### 如何在Docker安装配置和运行VLLM #### 准备工作 为了顺利部署 VLLM,在具备网络连接的环境中操作至关重要。确保目标机器能够访问互联网或指定的镜像源。 #### 获取VLLM Docker镜像 对于拥有正常外网连接的情况,可以通过官方渠道获取最新版本的 vLLM 镜像: ```bash docker pull vllm/vllm-openai:latest ``` 当遇到网络限制时,则建议利用国内用户创建的备用镜像库来加速下载过程[^1]。例如: ```bash docker pull docker.1panel.live/vllm/vllm-openai:latest ``` #### 启动容器并加载模型 完成镜像拉取之后,下一步就是启动基于此镜像的新容器,并挂载必要的文件夹用于存储模型权重和其他持久化数据。这里给出一个简单的命令模板作为参考: ```bash docker run --gpus all -it \ -p 8000:8000 \ -v /path/to/model:/model \ vllm/vllm-openai:latest ``` 上述指令中的`--gpus all`参数表示分配全部可用GPU资源给该容器;端口映射部分将主机上的8000端口转发至容器内部的服务监听地址;而通过 `-v` 参数实现本地路径与容器内的目录关联,方便后续上传预训练好的 Qwen2-7B-Instruct 模型文件。 #### 运行服务 一旦进入交互式的 shell 环境后,可以根据实际需求进一步调整环境变量设置、安装依赖包以及最终调用 Python 脚本来初始化 API 接口和服务进程。具体细节取决于所使用的特定框架及其文档说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值