Choose the best route
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 14431 Accepted Submission(s): 4711
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
5 8 5 1 2 2 1 5 3 1 3 4 2 4 7 2 5 6 2 3 5 3 5 1 4 5 1 2 2 3 4 3 4 1 2 3 1 3 4 2 3 2 1 1
1 -1
这道题比较任性,一看还是比较裸的dij最短路,但是不知道几点坑处,经验不足,就会像我这样多贡献几发TLE。
一开始上dij+队列优化,第一次超时,想到以前遇到一个变形最短路题矩阵存图就会T,然后换用邻接表存,orz,不够熟练,调试了好几回,终于测试数据通过提交,还是T。
这下就开始懵了,上网看了别人代码,啊,普通的dij都能过啊。突然想到scanf输入超时问题。改了,加过滤路线,A,果然。。。
坑点:这题后台的数据是按照稠密图给的,而且有大量的重合路线数据,必须特判,取最小,不然肯定得不出最短路。
邻接表存稠密图肯定会炸,而且邻接表是以边为编号,不好读取点的坐标,所以也不好过滤路线。所这题只能用矩阵存图。当然SPFA也可以了。。
这题让我温习了各种版本的dij写法。。。也了解了我这里的邻接表是反向插,如果用vector存的话是正向插,更好理解。话说堆优化的dij还没敲过。。
AC普通版:
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 1000+5;
int mp[maxn][maxn];
int vis[maxn];
int dis[maxn];
const int inf = 0x3f3f3f3f;
int main()
{
// freopen("in.txt","r",stdin);
int n,m,e;
while(~scanf("%d%d%d",&n,&m,&e))
{
for(int i = 1; i <= n; i++)
{
dis[i] = inf;
}
dis[0] = 0;
for(int i = 0; i <= n; i++)
{
for(int j = 0; j <= n; j++)
{
if(i==j) mp[i][j] = 0;
else mp[i][j] = inf;
}
}
while(m--)
{
int a,b,c;
// cin>>a>>b>>c;
scanf("%d%d%d",&a,&b,&c);
// mp[a][b] = c;
//原文中说两城市之间不只一条路,直接读会出错,比如后出现mp[1][2] = 100会覆盖之前的mp[1][2] = 3,肯定不是最短路
if(c<mp[a][b])
mp[a][b] = c;
}
int w;
cin>>w;
while(w--) {
int t;
scanf("%d",&t);
mp[0][t] = 0;
}
for(int i = 0; i <= n; i++)
{
dis[i] = mp[0][i];
vis[i] = 0;
}
vis[0] = 1;
;
int u;
for(int i = 0; i <= n; i++)
{
int Min = inf;
for(int j = 0; j <= n; j++)
{
if(dis[j]<Min&&!vis[j]) {
u=j;
Min = dis[j];
}
}
vis[u] = 1;
for(int d = 0; d <= n; d++) {
if(dis[u]+mp[u][d] < dis[d]&&!vis[d])
dis[d] = dis[u]+mp[u][d];
}
}
if(dis[e] == inf)
printf("-1\n");
else
printf("%d\n",dis[e]);
}
return 0;
}
AC:dij+队列优化矩阵存图:
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 1000+5;
const int INF = 0x3f3f3f3f;
ll ans;
int mp[maxn][maxn];
int dis[maxn];
struct Node {
int num;
int val;
}node;
priority_queue<Node> q;
bool operator < (Node a,Node b) {
return a.val > b.val;
}
int main() {
// freopen("in.txt","r",stdin);
int n,m,e;
while(~scanf("%d%d%d",&n,&m,&e)) {
// memset(mp,-1,sizeof(mp));
for(int i = 0; i<=n; i++)
for(int j = 0; j<=n; j++)
mp[i][j] = INF;
while(!q.empty()) q.pop();
for(int i = 0; i < m; i++) {
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(c<mp[a][b])
mp[a][b] = c;
}
int w;
cin>>w;
while(w--) {
int t;
scanf("%d",&t);
mp[0][t] = 0;
}
for(int i = 1; i <= n; i++) {
dis[i] = INF;
}
dis[0] = 0;
node.num = 0;
node.val = 0;
q.push(node);
while(!q.empty()) {
for(int i = 1; i <= n; i++) {
if(mp[q.top().num][i] != INF&&dis[i] > dis[q.top().num]+mp[q.top().num][i]) {
dis[i] = dis[q.top().num] + mp[q.top().num][i];
node.num = i;
node.val = dis[i];
q.push(node);
}
}
q.pop();
}
if(dis[e]!=INF)
cout<<dis[e]<<endl;
else
puts("-1");
}
}
TLE队列邻接表版:
#include <cstdio>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <utility>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>
typedef long long ll;
using namespace std;
const int maxn = 2000+10;
const int INF = 0x3f3f3f3f;
//int mp[maxn][maxn];
int first[maxn];
int num,dis[1010];
struct Node {
int id;
int val;
}node;
struct Edge {
int id;//以此点为出边找边
int val;
int next;
}e[maxn];
void add(int u,int v,int d) {
//num边的编号
e[num].id = v;
e[num].val = d;
e[num].next = first[u];
first[u] = num;
num++;
}
priority_queue<Node> q;
bool operator < (Node a,Node b) {
return a.val > b.val;
}
int main() {
// freopen("in.txt","r",stdin);
int n,m,End;
while(~scanf("%d%d%d",&n,&m,&End)) {
memset(first,-1,sizeof(first));
while(!q.empty()) q.pop();
for(int i = 0; i < m; i++) {
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int w;
scanf("%d",&w);
while(w--) {
int t;
scanf("%d",&t);
add(0,t,0);
}
for(int i = 1; i <= n; i++) {
dis[i] = INF;
}
Node cur;
dis[0] = 0;
node.id = 0;
node.val = 0;
q.push(node);
while(!q.empty()) {
if(cur.id == End){
break;
}
cur = q.top();
q.pop();
//i为边的编号
for(int i = first[cur.id]; i != -1; i = e[i].next) {
if(dis[e[i].id] > e[i].val+cur.val) {
dis[e[i].id] = e[i].val+cur.val;
node.id = e[i].id;
node.val = dis[e[i].id];
q.push(node);
}
}
}
// for(int i = 0; i <= n; i++) {
// printf("初始点到%d点的距离为%d\n",i,dis[i]);
// }
if(dis[End]!=INF)
cout<<dis[End]<<endl;
else
puts("-1");
}
}
普通的dij时间复杂度是找点+找边为O(N^2),队列优化可以把找点时间降到log n,加邻接表就是(m+n)log n,当m远小于n^2的时候,要比n^2小的多,但是如果是稠密图,m比较大的时候,(m+n)log n就比n^2还要大了。
附上队列优化邻接表正向插入的vector实现dij算法,真是好理解一些
/*
Dijkstra的算法思想:
在所有没有访问过的结点中选出dis(s,x)值最小的x
对从x出发的所有边(x,y),更新
dis(s,y)=min(dis(s,y),dis(s,x)+dis(x,y))
*/
#include <iostream>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std;
const int Ni = 10000;
const int INF = 1<<27;
struct node{
int x,d;
node(){}
node(int a,int b){x=a;d=b;}
bool operator < (const node & a) const
{
if(d==a.d) return x<a.x;
else return d > a.d;
}
};
vector<node> eg[Ni];
int dis[Ni],n;
void Dijkstra(int s)
{
int i;
for(i=0;i<=n;i++) dis[i]=INF;
dis[s]=0;
//用优先队列优化
priority_queue<node> q;
q.push(node(s,dis[s]));
while(!q.empty())
{
node x=q.top();q.pop();
for(i=0;i<eg[x.x].size();i++)
{
node y=eg[x.x][i];
if(dis[y.x]>x.d+y.d)
{
dis[y.x]=x.d+y.d;
q.push(node(y.x,dis[y.x]));
}
}
}
}
int main()
{
int a,b,d,m;
while(scanf("%d%d",&n,&m),n+m)
{
for(int i=0;i<=n;i++) eg[i].clear();
while(m--)
{
scanf("%d%d%d",&a,&b,&d);
eg[a].push_back(node(b,d));
eg[b].push_back(node(a,d));
}
Dijkstra(1);
printf("%d\n",dis[n]);
}
return 0;
}
/*
6 6
1 2 2
3 2 4
1 4 5
2 5 2
3 6 3
5 6 3
*/