LCIS
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3336 Accepted Submission(s): 1476
Problem Description
Given n integers.
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
Input
T in the first line, indicating the case number.
Each case starts with two integers n , m(0<n,m<=10 5).
The next line has n integers(0<=val<=10 5).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=10 5)
OR
Q A B(0<=A<=B< n).
Each case starts with two integers n , m(0<n,m<=10 5).
The next line has n integers(0<=val<=10 5).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=10 5)
OR
Q A B(0<=A<=B< n).
Output
For each Q, output the answer.
Sample Input
1 10 10 7 7 3 3 5 9 9 8 1 8 Q 6 6 U 3 4 Q 0 1 Q 0 5 Q 4 7 Q 3 5 Q 0 2 Q 4 6 U 6 10 Q 0 9
Sample Output
1 1 4 2 3 1 2 5
Author
shǎ崽
Source
区间合并,
维护一个区间的包含最左的元素的LCIS,包含最右元素的LCIS,以及整个区间的LCIS,然后更新的时候就更新这三个值就行了。
代码
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef struct
{
int l,r,val,lval,rval;
}Tree;
Tree tree[3000000];
int a[500005];
void PushUp(int t)
{
// printf("%d %d %d %d !!!!\n",tree[2*t+1].r,tree[2*t+2].l,a[tree[2*t+1].r],a[tree[2*t+2].l]);
tree[t].val=max(tree[2*t+1].val,tree[2*t+2].val);
if (a[tree[2*t+1].r]>=a[tree[2*t+2].l])
{
tree[t].lval=tree[2*t+1].lval;
tree[t].rval=tree[2*t+2].rval;
}
else
{
tree[t].val=max(tree[t].val,tree[2*t+1].rval+tree[2*t+2].lval);
if (tree[2*t+1].lval==tree[2*t+1].r-tree[2*t+1].l+1) tree[t].lval=tree[2*t+1].lval+tree[2*t+2].lval;
else tree[t].lval=tree[2*t+1].lval;
if (tree[2*t+2].rval==tree[2*t+2].r-tree[2*t+2].l+1) tree[t].rval=tree[2*t+1].rval+tree[2*t+2].rval;
else tree[t].rval=tree[2*t+2].rval;
tree[t].val=max(max(tree[t].val,tree[t].lval),tree[t].rval);
}
// printf("%d %d %d %d %d\n",tree[t].l,tree[t].r,tree[t].val,tree[t].lval,tree[t].rval);
}
void Build(int t,int l,int r)
{
tree[t].l=l;
tree[t].r=r;
if (l==r)
{
scanf("%d",&a[l]);
tree[t].val=a[l];
tree[t].lval=tree[t].rval=tree[t].val=1;
return;
}
int mid=(l+r)>>1;
Build(2*t+1,l,mid);
Build(2*t+2,mid+1,r);
PushUp(t);
}
int Query(int t,int l,int r)
{
if (tree[t].l==l && tree[t].r==r)
{
return tree[t].val;
}
int mid=(tree[t].l+tree[t].r)>>1;
int cnt=0;
if (l<=mid) cnt=max(cnt,Query(2*t+1,l,min(r,mid)));
if (r>mid) cnt=max(cnt,Query(2*t+2,max(l,mid+1),r));
if (l>mid || r<=mid || a[tree[2*t+1].r]>=a[tree[2*t+2].l]) return cnt;
int tmp=min(tree[2*t+1].rval,mid-l+1)+min(tree[2*t+2].lval,r-mid);
return max(tmp,cnt);
}
void Update(int t,int x,int val)
{
if (tree[t].l==tree[t].r)
{
a[tree[t].l]=val;
return;
}
int mid=(tree[t].l+tree[t].r)>>1;
if (x<=mid) Update(2*t+1,x,val);
else Update(2*t+2,x,val);
PushUp(t);
}
int main()
{
int i,j,n,T,m,x,y;
char str[5];
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
Build(0,0,n-1);
while(m--)
{
scanf("%s%d%d",str,&x,&y);
if (str[0]=='Q')
{
printf("%d\n",Query(0,x,y));
}
else
{
Update(0,x,y);
}
}
}
return 0;
}