[Leetcode] 548. Split Array with Equal Sum 解题报告

题目

Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies following conditions:

  1. 0 < i, i + 1 < j, j + 1 < k < n - 1
  2. Sum of subarrays (0, i - 1), (i + 1, j - 1), (j + 1, k - 1) and (k + 1, n - 1) should be equal.
where we define that subarray (L, R) represents a slice of the original array starting from the element indexed L to the element indexed R.

Example:

Input: [1,2,1,2,1,2,1]
Output: True
Explanation:
i = 1, j = 3, k = 5. 
sum(0, i - 1) = sum(0, 0) = 1
sum(i + 1, j - 1) = sum(2, 2) = 1
sum(j + 1, k - 1) = sum(4, 4) = 1
sum(k + 1, n - 1) = sum(6, 6) = 1

Note:
  1. 1 <= n <= 2000.
  2. Elements in the given array will be in range [-1,000,000, 1,000,000].

思路

首先想到的是暴力法,那就是三重循环,时间复杂度是O(n^3),空间复杂度是O(n)。不出意料,过不了大数据。

有一种采用空间换时间的做法:我们从中间进行分割,然后在前半部分进行搜索,看看是不是可以找到和相同的划分,如果找到了,就将和加入哈希表中;然后再在后半部分进行搜索,如果找到了和相同的划分并且该和也存在于哈希表中,这说明我们找到了合适的i,j,k,可以将数组划分为和相同的四个部分,返回true。这样时间复杂度就降低成了O(n^2)。

代码

1、暴力法:

class Solution {
public:
    bool splitArray(vector<int>& nums) {
        int n = nums.size();
        if (n < 7) {
            return false;
        }
        vector<int> sums(n, 0);
        sums[0] = nums[0];
        for (int i = 1; i < n; ++i) {
            sums[i] = sums[i - 1] + nums[i];
        }
        for (int i = 1; i < n - 1; ++i) {
            for (int j = i + 2; j < n - 1; ++j) {
                for (int k = j + 2; k < n - 1; ++k) {
                    int part1 = sums[i - 1];                        // [0, i - 1]
                    int part2 = sums[j - 1] - sums[i];              // [i + 1, j - 1]
                    int part3 = sums[k - 1] - sums[j];              // [j + 1, k - 1]
                    int part4 = sums[nums.size() - 1] - sums[k];    // [k + 1, n - 1]
                    if (part1 == part2 && part2 == part3 && part3 == part4) {
                        return true;
                    }
                }
            }
        }
        return false;
    }
};

2、哈希表法:

class Solution {
public:
    bool splitArray(vector<int>& nums) {
        int n = nums.size();
        if (n < 7) {
            return false;
        }
        vector<int> sums(n, 0);
        sums[0] = nums[0];
        for (int i = 1; i < n; ++i) {
            sums[i] = sums[i - 1] + nums[i];
        }
        for (int j = 3; j < n - 3; ++j) {         // j is the middle cut
            unordered_set<int> hash;
            for (int i = 1; i < j - 1; ++i) {
                if (sums[i - 1] == sums[j - 1] - sums[i]) {     // compare [0, i - 1] and [i + 1, j - 1]
                    hash.insert(sums[i - 1]);
                }
            }
            for (int k = j + 2; k < n - 1; ++k) {
                if (sums[n - 1] - sums[k] == sums[k - 1] - sums[j] && hash.count(sums[k - 1] - sums[j])) {
                    return true;
                }
            }
        }
        return false;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值