题目:
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
思路:
1、预先计算长度:我们可以采用线性扫描的方法获得链表长度,然后采用中序构造的方法来生成BST:即首先生成左子树,然后生成根节点,最后生成右子树。这是因为采用中序生成时,树节点的构造次序刚好和链表的遍历次序是一致的,因此我们可以维护一个全局的链表节点,随着该节点的推进,逐步构造出BST。具体请见代码片段1。
2、不预先计算长度:还记得处理链表问题的神器把?Two Pointers!在这里我们可以采用Two pointers的思路获得链表的中点,然后生成根节点,接着就可以采用递归的方式分别构造左子树和右子树了。这里特别需要注意递归的边界条件。另外这种方法对原有链表也有所破坏。如果面试官不允许对原始链表进行破坏,则建议采用思路1。
代码:
1、预先计算长度:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedListToBST(ListNode* head)
{
if(head == NULL)
return NULL;
int size = getSize(head);
current_node = head;
return constructTree(size);
}
private:
TreeNode* constructTree(int size) {
if(size <= 0) {
return NULL;
}
TreeNode* left = constructTree(size / 2);
TreeNode* root = new TreeNode(current_node->val);
current_node = current_node->next;
TreeNode* right = constructTree(size - size / 2 - 1);
root->left = left;
root->right = right;
return root;
}
int getSize(ListNode* head) {
int size = 0;
while(head){
++size;
head = head->next;
}
return size;
}
ListNode *current_node;
};
2、不预先计算长度:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedListToBST(ListNode* head) {
if (!head) {
return NULL;
}
if (!head->next) {
return new TreeNode(head->val);
}
ListNode *slow = head, *fast = head->next;
while (fast && fast->next && fast->next->next) {
slow = slow->next;
fast = fast->next->next;
}
fast = slow->next;
TreeNode *root = new TreeNode(fast->val);
fast = fast->next;
slow->next = NULL;
root->left = sortedListToBST(head);
root->right = sortedListToBST(fast);
return root;
}
};