给你一个未排序的整数数组 nums
,请你找出其中没有出现的最小的正整数。
请你实现时间复杂度为 O(n)
并且只使用常数级别额外空间的解决方案。
示例 1:
输入:nums = [1,2,0] 输出:3 解释:范围 [1,2] 中的数字都在数组中。
示例 2:
输入:nums = [3,4,-1,1] 输出:2 解释:1 在数组中,但 2 没有。
示例 3:
输入:nums = [7,8,9,11,12] 输出:1 解释:最小的正数 1 没有出现。
我们可以将数组所有的数放入哈希表,随后从 1 开始依次枚举正整数,并判断其是否在哈希表中。
仔细想一想,我们为什么要使用哈希表?这是因为哈希表是一个可以支持快速查找的数据结构:给定一个元素,我们可以在 O(1) 的时间查找该元素是否在哈希表中。因此,我们可以考虑将给定的数组设计成哈希表的「替代产品」。
实际上,对于一个长度为 N 的数组,其中没有出现的最小正整数只能在 [1,N+1] 中。这是因为如果 [1,N] 都出现了,那么答案是 N+1,否则答案是 [1,N] 中没有出现的最小正整数。这样一来,我们将所有在 [1,N] 范围内的数放入哈希表,也可以得到最终的答案。而给定的数组恰好长度为 N,这让我们有了一种将数组设计成哈希表的思路:
我们对数组进行遍历,对于遍历到的数 x,如果它在 [1,N] 的范围内,那么就将数组中的第 x−1 个位置(注意:数组下标从 0 开始)打上「标记」。在遍历结束之后,如果所有的位置都被打上了标记,那么答案是 N+1,否则答案是最小的没有打上标记的位置加 1。
那么如何设计这个「标记」呢?由于数组中的数没有任何限制,因此这并不是一件容易的事情。但我们可以继续利用上面的提到的性质:由于我们只在意 [1,N] 中的数,因此我们可以先对数组进行遍历,把不在 [1,N] 范围内的数修改成任意一个大于 N 的数(例如 N+1)。这样一来,数组中的所有数就都是正数了,因此我们就可以将「标记」表示为「负号」。算法的流程如下:
我们将数组中所有小于等于 0 的数修改为 N+1;
我们遍历数组中的每一个数 x,它可能已经被打了标记,因此原本对应的数为 ∣x∣,其中 ∣∣ 为绝对值符号。如果 ∣x∣∈[1,N],那么我们给数组中的第 ∣x∣−1 个位置的数添加一个负号。注意如果它已经有负号,不需要重复添加;
在遍历完成之后,如果数组中的每一个数都是负数,那么答案是 N+1,否则答案是第一个正数的位置加 1。
代码:
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
int n = nums.size();
for (int& num: nums) {
if (num <= 0) {
num = n + 1;
}
}
for (int i = 0; i < n; ++i) {
int num = abs(nums[i]);
if (num <= n) {
nums[num - 1] = -abs(nums[num - 1]);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] > 0) {
return i + 1;
}
}
return n + 1;
}
};