大模型本地部署 Llama 3.1:Ollama、OpenWeb UI 和 Spring AI 的综合指南

本文介绍如何使用 Ollama 在本地部署 Llama 3.1:8B 模型,并通过 OpenWeb UI 和 Spring AI 来增强模型交互体验和简化 API 的调用过程。

在这里插入图片描述

Ollama

Ollama 是一个开源的服务工具,旨在简化大模型的本地部署和运行过程。用户只需要输入一行命令(如: ollama run llama3.1 ),即可在本地硬件环境中部署和使用。Ollama 还提供了 REST API 接口,下文中会介绍如何使用 Spring AI 集成 Ollama,实现与大模型 API 接口的交互。

Ollama 支持下载 Llama、Gemma、qwen 和 glm4 等多种主流和代码语言模型,我们可以在 官网 查看 Ollama 支持的所有模型及其相关信息和使用命令。 本机运行 7B 参数量的模型至少需要 8GB 内存,运行 13B 参数量的模型至少需要 16GB 内存,运行 33B 参数量的模型至少需要 32GB 内存。

模型

参数

大小

使用命令

Llama 3.1

8B

4.7GB

ollama run llama3.1

Llama 3.1

70B

40GB

ollama run llama3.1:70b

Llama 3.1

405B

231GB

ollama run llama3.1:405b

Gemma 2

9B

5.5GB

ollama run gemma2

Gemma 2

27B

16GB

ollama run gemma2:27b

qwen2

7B

4.4GB

ollama run qwen2

qwen2

72B

41GB

ollama run qwen2:72b

glm4

9B

5.5GB

ollama run glm4

下载

访问 Ollama 官网,选择操作系统,然后点击 download 按钮进行下载。操作系统要求 MacOS 11 和 Windows 10 及以上版本。下载完成后的 Ollama 其实是一个命令行工具,我们可以直接在终端中使用 Ollama。(执行 ollama --help 可查看 Ollama 提供的的命令)

在这里插入图片描述

部署 Llama 3.1

在终端中执行命令 ollama run llama3.1 ,即可下载 Llama3.1:8B 模型。模型下载完成后,会自动启动大模型,进入命令行交互模式,直接输入指令,就可以和模型进行对话了。

在这里插入图片描述

通过 Ollama,我们轻松的实现了本地大模型的部署和命令行式的交互,但是为了更好的使用大模型,以及对大模型进行管理和配置等方面的需求,就需要借助 Ollama 社区中一些强大的工具了,其中代表性的工具之一是 OpenWeb UI(之前称为 Ollama WebUI)。

OpenWeb UI

OpenWeb UI 是一个功能丰富且易于使用的大模型管理工具,它为用户提供了一个直观的图形化界面,以及广泛的功能和灵活的配置选项。

  • 方便部署:使用 Docker 实现简单快捷的部署。
  • 用户友好的页面:国际化多语言支持,提供多种主题样式,响应式设计,模型参数、Prompt 等便捷配置。
  • 功能丰富:本地 RAG 支持,Web 浏览功能(可以在对话中访问网站),语音交互等。
  • API 支持:支持 OpenAI API 和其他兼容 API。
  • 多模型支持:支持同时管理和操作多个。

下载

部署 OpenWeb UI 需要使用 Docker 环境,我本机的 Docker 版本是 24.0.2。OpenWeb UI 提供了集成 Ollama 的部署方式, 因为 Ollama 已经下载到我本机上了,所以只需要执行以下命令即可完成部署。

sh
 代码解读
复制代码
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

容器启动成功后,可以访问 3000 端口,查看页面。首次登陆需要先填写邮箱和密码注册账号。登陆进来后,可以看到,OpenWeb UI 已经自动加载到了我们本地部署的 Llama3.1 模型。

在这里插入图片描述

在模型编辑页面,我们可以修改模型的配置参数和 Prompt 等信息,并利用 Document 和 Tools 等工具来增强模型的能力和使用体验。

在这里插入图片描述

Spring AI

Spring AI 是 Spring 生态里人工智能方向的应用框架,它提供了与各种交互的高级抽象接口,极大地简化了Java 人工智能应用程序的开发过程,让 Java 开发者也能够开发 AI 应用。

接下来将详细介绍 Spring AI 的使用流程,以及如何调用 Ollama 的 API 接口,与我们本地的 Llama 3.1 进行交互。

集成 Ollama

  1. 创建一个新的 Spring Boot 项目,版本要求 Spring Boot 3 + JDK 17。

  2. 引入 Spring AI + Ollama 依赖。

    xml
    代码解读
    复制代码

    <?xml version="1.0" encoding="UTF-8"?>


    4.0.0

    org.springframework.boot
    spring-boot-starter-parent
    3.3.1


    com.cleaner
    culture-ai
    0.0.1-SNAPSHOT
    Cleaner-ai
    culture-ai

    <java.version>17</java.version>
    <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>




    org.springframework.ai
    spring-ai-ollama-spring-boot-starter


    org.springframework.boot
    spring-boot-starter-web


    org.springframework.boot
    spring-boot-starter-test
    test






    org.springframework.ai
    spring-ai-bom
    ${spring-ai.version}
    pom
    import


    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>
    <repositories>
        <!-- spring ai -->
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>
    
  3. 编写 application.yaml 配置文件,添加 Ollama 的相关配置。

    yaml
    代码解读
    复制代码
    server:
    port: 8888
    spring:
    application:
    name: Cleaner-AI
    ai:
    ollama:
    # ollama API Server 地址
    base-url: http://localhost:11434
    chat:
    enabled: true
    # 使用的模型名称
    model:
    llama3.1:8b
    options:
    temperature: 0.7

  4. 编写接口。

    java
    代码解读
    复制代码
    package com.cleaner.ai.controller;

    import jakarta.annotation.Resource;
    import org.springframework.ai.chat.messages.UserMessage;
    import org.springframework.ai.chat.model.ChatResponse;
    import org.springframework.ai.chat.prompt.Prompt;
    import org.springframework.ai.ollama.OllamaChatModel;
    import org.springframework.web.bind.annotation.GetMapping;
    import org.springframework.web.bind.annotation.RequestMapping;
    import org.springframework.web.bind.annotation.RequestParam;
    import org.springframework.web.bind.annotation.RestController;
    import reactor.core.publisher.Flux;

    @RestController
    @RequestMapping(“/ollama”)
    public class OllamaController {

    @Resource
    private OllamaChatModel ollamaChatModel;
    
    
    /**
     * 流式对话
     *
     * @param message 用户指令
     * @return
     */
    @GetMapping("/streamChat")
    public Flux<ChatResponse> generateStream(@RequestParam("message") String message) {
        message = "请使用中文简体回答:" + message;
        Prompt prompt = new Prompt(new UserMessage(message));
        return ollamaChatModel.stream(prompt);
    }
    
    /**
     * 普通对话
     * @param message   用户指令
     * @return
     */
    @GetMapping("/chat")
    public String generate(@RequestParam("message") String message) {
        message = "请使用中文简体回答:" + message;
        Prompt prompt = new Prompt(new UserMessage(message));
        ChatResponse chatResponse = ollamaChatModel.call(prompt);
        String content = chatResponse.getResult().getOutput().getContent();
        System.out.println("content = " + content);
        return chatResponse.toString();
    }
    

    }

  5. 调用接口,可以看到 API 接口调用成功。(8B 模型生成的回答内容还是比较有限)

在这里插入图片描述

总结

本地部署的大模型可以脱离网络离线使用,但是要达到实际使用的要求,还需要对模型进行细致化的配置,当然部署模型的参数量越大,使用效果会更好,但也要考虑本机电脑的配置限制。对于学习了解大模型及其相关的技术知识而言,在条件允许的情况下,本机部署确实是一个不错的选择。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, ??有需要的小伙伴,可以 扫描下方二维码领取??↓↓↓

??优快云大礼包??:全网最全《LLM大模型入门+进阶学习资源包》免费分享**(安全链接,放心点击)**??

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, ??有需要的小伙伴,可以 扫描下方二维码领取??↓↓↓

??优快云大礼包??:全网最全《LLM大模型入门+进阶学习资源包》免费分享**(安全链接,放心点击)**??

### 如何在Spring Boot中生成使用UUID #### 使用Java内置类`java.util.UUID` 为了在Spring Boot项目中生成唯一的订单编号或其他唯一标识符,可以利用Java标准库中的`java.util.UUID`类来创建随机的UUID。下面是一个简单的例子展示怎样实现这一点: ```java import java.util.UUID; public class UUIDGenerator { public static String generateUUID() { // 生成一个UUID并将其转换成字符串形式返回 return UUID.randomUUID().toString(); } public static void main(String[] args) { String uuid = generateUUID(); System.out.println("Generated UUID: " + uuid); } } ``` 这段代码展示了基本的UUID生成逻辑[^1]。 #### 整合到Spring Boot应用 当希望将此功能集成至Spring Boot应用程序时,可以通过服务层的方法调用来获取新生成的UUID,并进一步用于业务逻辑处理或存储入数据库作为记录的关键字段。例如,在控制器接收HTTP请求后,通过注入的服务对象调用相应方法完成操作。 对于基于关系型数据库的应用场景,如果采用的是JPA,则可以在实体类上设置主键自动填充策略为UUID的方式简化开发流程;而对于图数据库Neo4j而言,也可以借助于自定义主键生成器来达到相同的效果[^2]。 #### 实际应用场景下的注意事项 实际部署过程中需要注意几点事项以确保系统的稳定性安全性: - **冲突概率极低但仍需考虑**:虽然UUID的设计使得重复的可能性非常之小,但在某些极端情况下仍可能发生碰撞。因此建议加入额外校验机制防止潜在风险。 - **性能影响评估**:频繁地生成大量UUID可能会给系统带来一定负担,特别是在高并发环境下更应关注其对整体性能的影响。 - **数据一致性维护**:考虑到分布式事务等因素可能导致的数据不一致问题,应当采取适当措施保障各节点间的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值