DBnet是一种流行的场景文本检测算法,通常与文本识别算法结合使用(检测+识别)。
一、准备工作
1、代码与数据集准备
代码下载地址:GitHub - WenmuZhou/DBNet.pytorch: A pytorch re-implementation of Real-time Scene Text Detection with Differentiable Binarization数据集地址:Downloads - Incidental Scene Text - Robust Reading Competition
数据集下载后通过以下代码生成trian.txt和test.txt,自行修改输入输出路径(Linux直接用generate_lists.sh文件生成)
import os
def get_images(img_path):
'''
find image files in data path
:return: list of files found
'''
files = []
exts = ['jpg', 'png', 'jpeg', 'JPG', 'PNG']
for parent, dirnames, filenames in os.walk(img_path):
for filename in filenames:
for ext in exts:
if filename.endswith(ext):
files.append(os.path.join(parent, filename))
break
print('Find {} images'.format(len(files)))
return sorted(files)
def get_txts(txt_path):
'''
find gt files in data path
:return: list of files found
'''
files = []
exts = ['txt']
for parent, dirnames, filenames in os.walk(txt_path):
for filename in filenames:
for ext