代码有参考,忘记链接了,找到后会贴出。
/一些说明/
U-Net连接部分选用双线性插值:
crop1 = F.interpolate(enc3, size=dec4.shape[2:], mode='bilinear', align_corners=True)
数据集选用CIFA10。
输入图像处理部分:transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))数值来源模型论文。
预处理模型选用vgg16。
loss函数选用MSE损失与感知损失。
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision import models
from torchvision.models import VGG16_Weights
from PIL import Image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# U-Net结构
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
# 编码器部分
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.ReLU()
)
# 解码器部分
self.deconv1 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1)
self.relu1 = nn.ReLU()
self.deconv2 = nn.ConvTranspose2d(512, 128, kernel_size=4, stride=2, padding=1) # 输入512(256+256)
self.relu2 = nn.ReLU()
self.deconv3 = nn.ConvTranspose2d(25