11. 盛最多水的容器

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:

输入:height = [1,1]
输出:1
 

提示:

n == height.length
2 <= n <= 105
0 <= height[i] <= 104

package PTAPractice;

import java.util.Scanner;

public class leetCode11 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n=sc.nextInt();
        int arr[]=new int[n];

        for(int i=0;i<arr.length;i++){
            arr[i]=sc.nextInt();
        }
        System.out.println(maxArea(arr));
    }
    public static int maxArea(int[] Area) {
        int l = 0, r = Area.length - 1;
        int maxArea = 0;
        while (l < r) {
            int area = (r - l) * Math.min(Area[l], Area[r]);
            int minH = Math.min(Area[l], Area[r]);
            maxArea = Math.max(maxArea, area);

            while (Area[l] <= minH && l < r) {
                l++;
            }
            while (Area[r] <= minH && l < r) {
                r--;
            }
        }
        return maxArea;
    }
}

题目中的"最多容器"实际上是一个著名的问题,也被称为"最多容器"问题。该问题可以用贪心算法来解决。 首先,我们定义一个指针对数组进行遍历。初始时,左指针指向数组的第一个元素,右指针指向数组的最后一个元素。我们计算当前指针所指向的两个元素构成的容器的面积。容器的面积是由两个因素决定的,即两个指针之间的距离和指针所指向的较小的元素的高度。我们将这个面积记录下来,并与之前的最大面积进行比较,保留最大的面积值。 接下来,我们要决定移动哪个指针。我们移动指针的原则是,每次移动指向较小元素的指针,这样才有可能找到更高的柱子,进而获得更大的面积。假设当前左指针指向的元素较小,那么我们将左指针向右移动一位。否则,如果右指针指向的元素较小,我们将右指针向左移动一位。 重复上述的过程,直到两个指针相遇为止。最后得到的最大面积即为所求。 下面是用Python编写的解法代码: def maxArea(height): left = 0 right = len(height) - 1 maxArea = 0 while left < right: area = min(height[left], height[right]) * (right - left) maxArea = max(maxArea, area) if height[left] < height[right]: left += 1 else: right -= 1 return maxArea 这段代码的时间复杂度是O(n),其中n是数组的长度。因为我们只对整个数组进行了一次遍历。因此,该解法是一个高效解法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值