【计算机视觉技术 - 人脸生成】2.GAN网络的构建和训练

         GAN 是一种常用的优秀的图像生成模型。我们使用了支持条件生成的 cGAN。下面介绍简单 cGAN 模型的构建以及训练过程。

2.1 在 model 文件夹中新建 nets.py 文件

import torch
import torch.nn as nn


# 生成器类
class Generator(nn.Module):
    def __init__(self, nz=100, nc=3, ngf=128, num_classes=4):
        super(Generator, self).__init__()
        self.label_emb = nn.Embedding(num_classes, nz)

        self.main = nn.Sequential(
            nn.ConvTranspose2d(nz + nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),

            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),

            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),

            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),

            nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
        )

    def forward(self, z, labels):
        c = self.label_emb(labels).unsqueeze(2).unsqueeze(3)
        x = torch.cat([z, c], 1)
        return self.main(x)


# 判别器类
class Discriminator(nn.Module):
    def __init__(self, nc=3, ndf=64, num_classes=4):
        super(Discriminator, self).__init__()
        self.label_emb = nn.Embedding(num_classes, nc * 64 * 64)

        self.main = nn.Sequential(
            nn.Conv2d(nc + 1, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),

            nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, img, labels):
        c = self.label_emb(labels).view(labels.size(0), 1, 64, 64)
        x = torch.cat([img, c], 1)
        return self.main(x)

2.2新建cGAN_net.py

import torch
import torch.nn as nn
from torch.optim import Adam
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR


# ===========================
# Conditional DCGAN 实现
# ===========================
class cDCGAN:
    def __init__(self, data_root, batch_size, device, latent_dim=100, num_classes=4):
        self.device = device
        self.batch_size = batch_size
        self.latent_dim = latent_dim
        self.num_classes = num_classes

        # 数据加载器
        self.train_loader = self.get_dataloader(data_root)

        # 初始化生成器和判别器
        self.generator = self.build_generator().to(device)
        self.discriminator = self.build_discriminator().to(device)

        # 初始化权重
        self.generator.apply(self.weights_init)
        self.discriminator.apply(self.weights_init)

        # 损失函数和优化器
        self.criterion = nn.BCELoss()
        self.optimizer_G = Adam(self.generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
        self.optimizer_D = Adam(self.discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))

        # 学习率调度器
        self.scheduler_G = StepLR(self.optimizer_G, step_size=10, gamma=0.5)  # 每10个epoch学习率减半
        self.scheduler
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bowen_CV

哇噻,感谢你的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值