【C++第十七章】二叉搜索树

【C++第十七章】二叉搜索树

二叉搜索树的介绍🧐

  二叉搜索树又称二叉排序树,它可能是空树,也可能是具有以下性质的二叉树:

  1. 若它的左子树不为空,则左子树上的所有节点的值小于根节点的值
  2. 若它的右子树不为空,则右子树上的所有节点的值大于根节点的值
  3. 它的左右子树也分别为二叉搜索树

  如我们将如下数组放入二叉搜索树中,会得到这样的结构,可以发现,它的中序是有序排列的

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

image-20241006113049718

二叉搜索树的查找🧐

  从根开始比较查找,比根大就往右走,比根小就往左走,最多走树的高度次,如果走到空了还没找到,就是不存在。

参考代码:

bool Find(const K& key)
{
    Node* cur = _root;
    while (cur)
    {
        if (cur->_key < key)
        {
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            cur = cur->_left;
        }
        else
        {
            return true;
        }
    }
    return false;
}

二叉搜索树的插入🧐

  当树为空时,直接增加新的节点,赋值给root指针,如果不为空,则按性质插入,小于根在左,大于根在右

image-20241006113802253

参考代码

bool Insert(const K& key)
{
    if (_root == nullptr) //第一次插入
    {
        _root = new Node(key);
        return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
        parent = cur;
        if (cur->_key < key)
        {
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }
    //链接
    cur = new Node(key);
    if (parent->_key < key)
    {
        parent->_right = cur;
    }
    else if (parent->_key > key)
    {
        parent->_left = cur;
    }
    return true;
}

二叉搜索树的删除🧐

  首先查找元素是否存在,不存在就直接返回,存在则要分四种情况分析:

  1. 要删除的节点没有孩子节点
  2. 要删除的节点只有左孩子节点
  3. 要删除的节点只有右孩子节点
  4. 要删除的节点有左右孩子节点

  而第一种情况可以和第二种和第三种合并起来,所以真正情况有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A.A呐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值