01-Tensor概述

1、概念

张量是一个多维数组,通俗来说可以看作是扩展了标量、向量、矩阵的更高维度的数组。张量的维度决定了它的形状(Shape),例如:

  • 标量 是 0 阶张量,只有大小没有方向(温度,高度),如 a = torch.tensor(5)

  • 向量 是 1 阶张量,具有大小和方向(加速度,力),如 b = torch.tensor([1, 2, 3])

  • 2维矩阵 是 2 阶张量,线性变换(旋转矩阵,位移矩阵),,如 c = torch.tensor([[1, 2], [3, 4]])

  • 更高维度的张量,如3维、4维等,通常用于表示图像、视频数据等复杂结构。

2、特点

  • 动态计算图:PyTorch 支持动态计算图,这意味着在每一次前向传播时,计算图是即时创建的。

  • GPU 支持:PyTorch 张量可以通过 .to('cuda') 移动到 GPU 上进行加速计算。

  • 自动微分:通过 autograd 模块,PyTorch 可以自动计算张量运算的梯度,这对深度学习中的反向传播算法非常重要。

3、数据类型

PyTorch中有3种数据类型:浮点数、整数、布尔。其中,浮点数和整数又分为8位、16位、32位、64位,加起来共9种。

为什么要分为8位、16位、32位、64位呢?

场景不同,对数据的精度和速度要求不同。通常,移动或嵌入式设备追求速度,对精度要求相对低一些。精度越高,往往效果也越好,自然硬件开销就比较高。

其他知识请看专栏!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值