import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
#取出torchvision库中datasets模块的CIFAR10数据集
dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=False)
dataloader = DataLoader(dataset,batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
def forward(self,x):
x=self.conv1(x)
return x
tudui = Tudui()
print(tudui)
writer = SummaryWriter("./logs")
step = 0
for data in dataloader:
imgs,targets = data
output = tudui(imgs)
print(output.shape)
print(imgs.shape)
#输入torch.Size([64, 3, 32, 32])
writer.add_images("input",imgs,step)
#输出torch.Size([64, 6, 30, 30]) ->[xxx,3,30,30]
output = torch.reshape(output,(-1,3,30,30))
writer.add_images("output",output,step)
step+=1
p18 神经网络卷积层
最新推荐文章于 2025-05-21 22:52:13 发布