问题定义
强化学习关注的是在于环境交互中学习,是一种试错学习的范式。在正式进入强化学习之前,我们先来了解多臂老虎机问题。该问题也被看作简化版的强化学习,帮助我们更快地过度到强化学习阶段。
有一个拥有 K K K 根拉杆的老虎机,拉动每根拉杆都有着对应奖励 R R R,且这些奖励可以进行累加。在各根拉杆的奖励分布未知的情况下,从头开始尝试,在进行 T T T 步操作次数后,得到尽可能高的累计奖励。
对于每个动作 a a a,我们定义其期望奖励是 Q ( a ) Q(a) Q(a)。是,至少存在一根拉杆,它的期望奖励不小于拉动其他任意一根拉杆,我们将该最优期望奖励表示为
Q ∗ = max a ∈ A Q ( a ) Q^* = \max_{a \in A}Q(a) Q∗=a∈AmaxQ(a)
为了更为直观的表示实际累计奖励和真实累计奖励之间的误差,我们引入懊悔概念,用来表示它们之间的差值。
R ( a ) = Q ∗ − Q ( a ) R(a) = Q^* - Q(a) R(a)=Q∗−Q(a)
下面我们编写代码来实现一个拉杆数为 10 的多臂老虎机。其中拉动每根拉杆的奖励服从伯努利分布(Bernoulli distribution),即每次拉下拉杆有的概率获得的奖励为 1,有的概率获得的奖励为 0。奖励为 1 代表获奖,奖励为 0 代表没有获奖。
import numpy as np
import matplotlib.pyplot as plt
class BernouliiBandit:
def __init__(self, K):
self.probs:np.ndarray = np.random.uniform(size=K) # type: ignore # 随机生成K个0~1的数,作为拉动每根拉杆的获奖 #
# 概率
self.best_idx = np.argmax(self.probs) # 获奖概率最大的拉杆
self.best_prob = self.probs[self.best_idx] # 最大的获奖概率
self.K = K
def step(self, k