【机器学习-分类算法】
现在权重向量w和训练数据的向量x(1)二者的方向几乎相反,w和x(1)之间的夹角θ的范围是90◦<θ<270◦,内积为负。也就是说,判别函数fw(x(1))的分类结果为−1,而训练数据x(1)的标签y(1)是1,所以fw(x(1))≠y(1)分类失败。刚才x(1)与权重向量分居直线两侧,现在它们在同一侧了,即这次θ<90◦,所以内积为正,判别函数fw(x)的分类结果为1。考虑一下使这个目标函数最大化的参数θ(回归的时候处理的是误差,所以要最小化,而现在考虑的是联合概率,我们希望概率尽可能大,所以要最大化)
原创
2025-03-20 20:56:07 ·
1577 阅读 ·
3 评论