这是一个非常经典的运输问题:
我发现网上有许多关于这个问题的代码,但是都没有注释或解说,所以我在代码中加上了注释,以便于更好的理解,有不懂的欢迎留言,或者看看我的另一篇文章https://blog.youkuaiyun.com/m0_59309242/article/details/119352731,或许就能找到答案
import pulp
import numpy as np
from pprint import pprint #导入库函数
def transportation_problem(costs, x_max, y_max):
row = len(costs) #规定行数
col = len(costs[0]) #规定列数
prob = pulp.LpProblem(sense=pulp.LpMaximize)
var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0, cat='Integer') for j in range(col)] for i in range(row)] #规定变量,此处的f''是为了将x,y传给i,j
flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x] #匿名函数,总而言之是为了变成一维数组
prob += pulp.lpDot(flatten(var), costs.flatten()) #做点积
for i in range(row):
prob += (pulp.lpSum(var[i]) <= x_max[i]) #lp计算序列的和,用lpsum比普通的sum快很多;此处属于添加条件使各作物小于计划播种面积
for j in range(col):
prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j])
prob.solve()
return {'objective':pulp.value(prob.objective), 'var': [[pulp.value(var[i][j]) for j in range(col)] for i in range(row)]}
if __name__ == '__main__':
costs = np.array([[500, 550, 630, 1000, 800, 700],
[800, 700, 600, 950, 900, 930],
[1000, 960, 840, 650, 600, 700],
[1200, 1040, 980, 860, 880, 780]])
max_plant = [76, 88, 96, 40]
max_cultivation = [42, 56, 44, 39, 60, 59]
res = transportation_problem(costs, max_plant, max_cultivation) #调用函数
print(f'最大值为{res["objective"]}')
print('各变量的取值为:')
pprint(res['var'])
代码中flatten的用法在这儿https://blog.youkuaiyun.com/m0_59309242/article/details/119464565
得到的结果是: