pycharm链接neo4j(导入文件)

1.新建csv文件

2.写入文件 

3.运行代码 

import csv
from py2neo import Graph, Node, Relationship

# 连接到Neo4j数据库,使用Bolt协议
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 读取CSV文件
with open('tanxin.csv', 'r', encoding='utf-8') as csvfile:
    reader = csv.DictReader(csvfile)

    nodes_created = {}

    for row in reader:
        # 创建节点
        node_label = row['Type']
        node_name = row['Name']
        node_description = row['Description']
        node_pseudocode = row['Pseudocode']
        node_time_complexity = row['Time Complexity']
        node_properties = {
            'description': node_description,
            'pseudocode': node_pseudocode,
            'time_complexity': node_time_complexity
        }
        node = Node(node_label, name=node_name, **node_properties)
        graph.create(node)
        nodes_created[(node_label, node_name)] = node

        # 创建关系
        if row['Relationship'] and row['RelatedNode']:
            related_node_parts = row['RelatedNode'].split(':')
            if len(related_node_parts) == 2:
                related_node_label, related_node_name = related_node_parts
                if (related_node_label, related_node_name) in nodes_created:
                    related_node = nodes_created[(related_node_label, related_node_name)]
                    relationship = Relationship(node, row['Relationship'], related_node)
                    graph.create(relationship)
                else:
                    print(f"Related node {related_node_label}:{related_node_name} not found.")
            else:
                print(f"Invalid RelatedNode format: {row['RelatedNode']}")

# 查询并打印结果
results = graph.run("MATCH (n)-[r]->(m) RETURN n, r, m")
for record in results:
    print(record)

4.结果展示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值