//a=x+y,b=xy/gcd(x,y),gcd(x,y)=c,i*c=x,j*c=y,gcd(i,j)=1
//a=(i+j)*c,b=i*j*c
//假设i+j与i有共因子t,则t既为i,又为j的公因子,j同理
//所以gcd(i+j,i)=1,gcd(i+j,j)=1
//所以gcd(i+j,i*j)=1
//所以gcd(a,b)=c=gcd(x,y)
//所以x*y=i*j*c*c=b*gcd(a,b)
//x*(a-x)=b*gcd(a,b)
//x=(a+sqrt(a*a-4*b*gcd(a,b)))/2
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll gcd(ll a,ll b){
return b>0?gcd(b,a%b):a;
}
int main(){
ll a,b;
while(cin>>a>>b){
ll c=gcd(a,b);
if(sqrt(a*a-4*b*c)==(ll)sqrt(a*a-4*b*c)&&((a+(ll)sqrt(a*a-4*b*c))%2)==0){//保证x存在且为整数
ll x=(a+sqrt(a*a-4*b*c))/2;
printf("%lld %lld\n",x<a-x?x:a-x,x>a-x?x:a-x);
}
else{
cout<<"No Solution\n";
}
}
}